A fully implicit parallel solver for viscous flows; numerical tests on high performance machines

Author(s):  
E. Bucchignani ◽  
F. Stella
2011 ◽  
Vol 57 (4) ◽  
pp. 425-447 ◽  
Author(s):  
W. Gilewski ◽  
M. Sitek

Abstract Development of high-performance finite elements for thick, moderately thick, as well as thin shells and plates, was one of the active areas of the finite element technology for 40 years, followed by hundreds of publications. A variety of shell elements exist in the FE codes, but “the best” finite element is still to be discovered. The paper deals with an evaluation of some existing shell finite elements, from the point of view of the third of three requirements to be satisfied by the element: ellipticity, consistency and inf-sup condition. It is difficult to prove the inf-sup condition analytically, so, a numerical verification is proposed. A set of numerical tests is considered for shell and plate problems. Two norm matrices and a selection of the stiffness matrices (bending, shear and membrane dominated) are analysed. Finite elements from various computer systems can be evaluated and compared with the use of the proposed tests.


Author(s):  
M. A. Maksimov ◽  
I. V. Surodina ◽  
V. N. Glinskikh

High-performance algorithm for an unmanned magnetometer complex data inversion is proposed. We provide numerical tests for tomographic inversion of data for the different-height magnetic surveying. We show the results of calculations for a test model with a magnetic object in the form of a cylinder of finite height. We propose the recommendations for the method application for the inversion of the observed data.


2021 ◽  
Author(s):  
Sanjoy Kumar Khataniar ◽  
Daniel De Brito Dias ◽  
Rong Xu

Abstract A new implementation of a multiscale sequential fully implicit (MS SFI) reservoir simulation method is applied to a set of reservoir engineering problems to understand its utility. An assessment is made to highlight areas where the approach brings substantial advantage in performance as well as address problems not successfully resolved by existing methods. This work makes use of the first ever implementation of the multiscale sequential fully implicit method in a commercial reservoir simulator. The key features of the method and implementation are briefly discussed. The learnings gained during field testing and commercialization on about forty real world models is illustrated through simpler, but representative data sets, available in the public domain. The workhorse robust fully implicit (FI) method is used as a reference for benchmarking. The MS SFI method can faithfully reproduce FI results for black oil problems. We conclude that the MS SFI method has the capability to support reservoir engineering decision making especially in the areas of subsurface uncertainty quantification, representative model selection, model calibration and optimization. The MS SFI method shows immense potential for handling prominent levels of reservoir heterogeneity. The challenge of including fine-scale heterogeneity, which is often overlooked, when scaling up EOR processes from laboratory to field, appears to have found a practical solution with a combination of MS SFI and high-performance computing (HPC).


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Krzysztof Kosowski ◽  
Karol Tucki ◽  
Adrian Kosowski

We present the results of numerical tests of artificial neural networks (ANNs) applied in the investigations of flows in steam turbine cascades. Typical constant cross-sectional blades, as well as high-performance blades, were both considered. The obtained results indicate that ANNs may be used for estimating the spatial distribution of flow parameters, such as enthalpy, entropy, pressure, velocity, and energy losses, in the flow channel. Finally, we remark on the application of ANNs in the design process of turbine flow parts, as an extremely fast complementary method for many 3D computational fluid dynamics calculations. By using ANNs combined with evolutionary algorithms, it is possible to reduce by several orders of magnitude the time of design optimization for cascades, stages, and groups of stages.


2021 ◽  
Author(s):  
A. Novikov ◽  
D. V. Voskov ◽  
M. Khait ◽  
H. Hajibeygi ◽  
J. D. Jansen

Abstract We develop a collocated Finite Volume Method (FVM) to study induced seismicity as a result of pore pressure fluctuations. A discrete system is obtained based on a fully-implicit coupled description of flow, elastic deformation, and contact mechanics at fault surfaces on a fully unstructured mesh. The cell-centered collocated scheme leads to convenient integration of the different physical equations, as the unknowns share the same discrete locations on the mesh. Additionally, a multi-point flux approximation is formulated in a general procedure to treat heterogeneity, anisotropy, and cross-derivative terms for both flow and mechanics equations. The resulting system, though flexible and accurate, can lead to excessive computational costs for field-relevant applications. To resolve this limitation, a scalable parallel solution algorithm is developed and presented. Several proof-of-concept numerical tests, including benchmark studies with analytical solutions, are investigated. It is found that the presented method is indeed accurate, stable and efficient; and as such promising for accurate and efficient simulation of induced seismicity.


Sign in / Sign up

Export Citation Format

Share Document