The Role of COUP-TFII in Striated Muscle Development and Disease

Author(s):  
Xin Xie ◽  
San-Pin Wu ◽  
Ming-Jer Tsai ◽  
Sophia Tsai
2003 ◽  
Vol 14 (4) ◽  
pp. 1677-1690 ◽  
Author(s):  
Pamela E. Hoppe ◽  
Rebecca C. Andrews ◽  
Payal D. Parikh

Myosin heavy chain (MHC) is a large, multidomain protein important for both cellular structure and contraction. To examine the functional role of two C-terminal domains, the end of the coiled-coil rod and the nonhelical tailpiece, we have generated constructs in which residues within these domains are removed or mutated, and examined their behavior in Caenorhabditis elegans striated muscle. Genetic tests demonstrate that MHC lacking only tailpiece residues is competent to support the timely onset of embryonic contractions, and therefore viability, in animals lacking full-length MHC. Antibody staining experiments show that this truncated molecule localizes as wild type in early stages of development, but may be defective in processes important for thick filament organization later in embryogenesis. Ultrastructural analysis reveals thick filaments of normal morphology in disorganized arrangement, as well as occasional abnormal assemblages. In contrast, molecules in which the four terminal residues of the coiled coil are absent or mutated fail to rescue animals lacking endogenous MHC. Loss of these four residues is associated with delayed protein localization and delayed contractile function during early embryogenesis. Our results suggest that these two MHC domains, the rod and the tailpiece, are required for distinct steps during muscle development.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


2021 ◽  
Vol 296 ◽  
pp. 100395
Author(s):  
Tzu-Chieh Chen ◽  
Taiyi Kuo ◽  
Mohamad Dandan ◽  
Rebecca A. Lee ◽  
Maggie Chang ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gwenaëlle G. Lemoine ◽  
Marie-Pier Scott-Boyer ◽  
Bathilde Ambroise ◽  
Olivier Périn ◽  
Arnaud Droit

Abstract Background Network-based analysis of gene expression through co-expression networks can be used to investigate modular relationships occurring between genes performing different biological functions. An extended description of each of the network modules is therefore a critical step to understand the underlying processes contributing to a disease or a phenotype. Biological integration, topology study and conditions comparison (e.g. wild vs mutant) are the main methods to do so, but to date no tool combines them all into a single pipeline. Results Here we present GWENA, a new R package that integrates gene co-expression network construction and whole characterization of the detected modules through gene set enrichment, phenotypic association, hub genes detection, topological metric computation, and differential co-expression. To demonstrate its performance, we applied GWENA on two skeletal muscle datasets from young and old patients of GTEx study. Remarkably, we prioritized a gene whose involvement was unknown in the muscle development and growth. Moreover, new insights on the variations in patterns of co-expression were identified. The known phenomena of connectivity loss associated with aging was found coupled to a global reorganization of the relationships leading to expression of known aging related functions. Conclusion GWENA is an R package available through Bioconductor (https://bioconductor.org/packages/release/bioc/html/GWENA.html) that has been developed to perform extended analysis of gene co-expression networks. Thanks to biological and topological information as well as differential co-expression, the package helps to dissect the role of genes relationships in diseases conditions or targeted phenotypes. GWENA goes beyond existing packages that perform co-expression analysis by including new tools to fully characterize modules, such as differential co-expression, additional enrichment databases, and network visualization.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1443
Author(s):  
Susana A. Teixeira ◽  
Daniele B. D. Marques ◽  
Thaís C. Costa ◽  
Haniel C. Oliveira ◽  
Karine A. Costa ◽  
...  

Since pre- and postnatal development are programmed during early prenatal life, studies addressing the complete transcriptional landscape during organogenesis are needed. Therefore, we aimed to disentangle differentially expressed (DE) genes between fetuses (at 35 days old) and embryos (at 25 days old) through RNA-sequencing analysis using the pig as model. In total, 1705 genes were DE, including the top DE IBSP, COL6A6, HBE1, HBZ, HBB, and NEUROD6 genes, which are associated with developmental transition from embryos to fetuses, such as ossification, skeletal muscle development, extracellular matrix organization, cardiovascular system, erythrocyte differentiation, and neuronal system. In pathway analysis, embryonic development highlighted those mainly related to morphogenic signaling and cell interactions, which are crucial for transcriptional control during the establishment of the main organs in early prenatal development, while pathways related to myogenesis, neuronal development, and cardiac and striated muscle contraction were enriched for fetal development, according to the greater complexity of organs and body structures at this developmental stage. Our findings provide an exploratory and informative transcriptional landscape of pig organogenesis, which might contribute to further studies addressing specific developmental events in pigs and in other mammals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osvaldo Contreras ◽  
Fabio M. V. Rossi ◽  
Marine Theret

AbstractStriated muscle is a highly plastic and regenerative organ that regulates body movement, temperature, and metabolism—all the functions needed for an individual’s health and well-being. The muscle connective tissue’s main components are the extracellular matrix and its resident stromal cells, which continuously reshape it in embryonic development, homeostasis, and regeneration. Fibro-adipogenic progenitors are enigmatic and transformative muscle-resident interstitial cells with mesenchymal stem/stromal cell properties. They act as cellular sentinels and physiological hubs for adult muscle homeostasis and regeneration by shaping the microenvironment by secreting a complex cocktail of extracellular matrix components, diffusible cytokines, ligands, and immune-modulatory factors. Fibro-adipogenic progenitors are the lineage precursors of specialized cells, including activated fibroblasts, adipocytes, and osteogenic cells after injury. Here, we discuss current research gaps, potential druggable developments, and outstanding questions about fibro-adipogenic progenitor origins, potency, and heterogeneity. Finally, we took advantage of recent advances in single-cell technologies combined with lineage tracing to unify the diversity of stromal fibro-adipogenic progenitors. Thus, this compelling review provides new cellular and molecular insights in comprehending the origins, definitions, markers, fate, and plasticity of murine and human fibro-adipogenic progenitors in muscle development, homeostasis, regeneration, and repair.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 957-971 ◽  
Author(s):  
M. Goulding ◽  
A. Lumsden ◽  
A.J. Paquette

The segmented mesoderm in vertebrates gives rise to a variety of cell types in the embryo including the axial skeleton and muscle. A number of transcription factors containing a paired domain (Pax proteins) are expressed in the segmented mesoderm during embryogenesis. These include Pax-3 and a closely related gene, Pax-7, both of which are expressed in the segmental plate and in the dermomyotome. In this paper, we show that signals from the notochord pattern the expression of Pax-3, Pax-7 and Pax-9 in somites and the subsequent differentiation of cell types that arise from the somitic mesoderm. We directly assess the role of the Pax-3 gene in the differentiation of cell types derived from the dermomyotome by analyzing the development of muscle in splotch mouse embryos which lack a functional Pax-3 gene. A population of Pax-3-expressing cells derived from the dermomyotome that normally migrate into the limb are absent in homozygous splotch embryos and, as a result, limb muscles are lost. No abnormalities were detected in the trunk musculature of splotch embryos indicating that Pax-3 is necessary for the development of the limb but not trunk muscle.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3675-3686 ◽  
Author(s):  
H.M. Stern ◽  
A.M. Brown ◽  
S.D. Hauschka

Previous studies have demonstrated that the neural tube/notochord complex is required for skeletal muscle development within somites. In order to explore the localization of myogenic inducing signals within the neural tube, dorsal or ventral neural tube halves were cultured in contact with single somites or pieces of segmental plate mesoderm. Somites and segmental plates cultured with the dorsal half of the neural tube exhibited 70% and 85% myogenic response rates, as determined by immunostaining for myosin heavy chain. This response was slightly lower than the 100% response to whole neural tube/notochord, but was much greater than the 30% and 10% myogenic response to ventral neural tube with and without notochord. These results demonstrate that the dorsal neural tube emits a potent myogenic inducing signal which accounts for most of the inductive activity of whole neural tube/notochord. However, a role for ventral neural tube/notochord in somite myogenic induction was clearly evident from the larger number of myogenic cells induced when both dorsal neural tube and ventral neural tube/notochord were present. To address the role of a specific dorsal neural tube factor in somite myogenic induction, we tested the ability of Wnt-1-expressing fibroblasts to promote paraxial mesoderm myogenesis in vitro. We found that cells expressing Wnt-1 induced a small number of somite and segmental plate cells to undergo myogenesis. This finding is consistent with the localized dorsal neural tube inductive activity described above, but since the ventral neural tube/notochord also possesses myogenic inductive capacity yet does not express Wnt-1, additional inductive factors are likely involved.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1504 ◽  
Author(s):  
Miaomiao Mai ◽  
Long Jin ◽  
Shilin Tian ◽  
Rui Liu ◽  
Wenyao Huang ◽  
...  

MicroRNAs (miRNAs) play critical roles in many important biological processes, such as growth and development in mammals. Various studies of porcine muscle development have mainly focused on identifying miRNAs that are important for fetal and adult muscle development; however, little is known about the role of miRNAs in middle-aged muscle development. Here, we present a comprehensive investigation of miRNA transcriptomes across five porcine muscle development stages, including one prenatal and four postnatal stages. We identified 404 known porcine miRNAs, 118 novel miRNAs, and 101 miRNAs that are conserved in other mammals. A set of universally abundant miRNAs was found across the distinct muscle development stages. This set of miRNAs may play important housekeeping roles that are involved in myogenesis. A short time-series expression miner analysis indicated significant variations in miRNA expression across distinct muscle development stages. We also found enhanced differentiation- and morphogenesis-related miRNA levels in the embryonic stage; conversely, apoptosis-related miRNA levels increased relatively later in muscle development. These results provide integral insight into miRNA function throughout pig muscle development stages. Our findings will promote further development of the pig as a model organism for human age-related muscle disease research.


Sign in / Sign up

Export Citation Format

Share Document