scholarly journals Transcription Landscape of the Early Developmental Biology in Pigs

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1443
Author(s):  
Susana A. Teixeira ◽  
Daniele B. D. Marques ◽  
Thaís C. Costa ◽  
Haniel C. Oliveira ◽  
Karine A. Costa ◽  
...  

Since pre- and postnatal development are programmed during early prenatal life, studies addressing the complete transcriptional landscape during organogenesis are needed. Therefore, we aimed to disentangle differentially expressed (DE) genes between fetuses (at 35 days old) and embryos (at 25 days old) through RNA-sequencing analysis using the pig as model. In total, 1705 genes were DE, including the top DE IBSP, COL6A6, HBE1, HBZ, HBB, and NEUROD6 genes, which are associated with developmental transition from embryos to fetuses, such as ossification, skeletal muscle development, extracellular matrix organization, cardiovascular system, erythrocyte differentiation, and neuronal system. In pathway analysis, embryonic development highlighted those mainly related to morphogenic signaling and cell interactions, which are crucial for transcriptional control during the establishment of the main organs in early prenatal development, while pathways related to myogenesis, neuronal development, and cardiac and striated muscle contraction were enriched for fetal development, according to the greater complexity of organs and body structures at this developmental stage. Our findings provide an exploratory and informative transcriptional landscape of pig organogenesis, which might contribute to further studies addressing specific developmental events in pigs and in other mammals.

Author(s):  
Tara A Shrout

Titin is the largest known protein in the human body, and forms the backbone of all striated muscle sarcomeres. The elastic nature of titin is an important component of muscle compliance and functionality. A significant amount of energy is expended to synthesize titin, thus we postulate that titin gene expression is under strict regulatory control in order to conserve cellular resources. In general, gene expression is mediated in part by post-transcriptional control elements located within the 5’ and 3’ untranslated regions (UTRs) of mature mRNA. The 3’UTR in particular contains structural features that affect binding capacity to other RNA components, such as MicroRNA, which control mRNA localization, translation, and degradation. The degree and significance of the regulatory effects mediated by two determined variants of titin’s 3’ UTR were evaluated in Neonatal Rat Ventricular Myocyte and Human Embryonic Kidney cell lines. Recombinant plasmids to transfect these cells lines were engineered by insertion of the variant titin 3’UTR 431- and 1047-base pairs sequences into luciferase reporter vectors. Expression due to an unaltered reporter vector served as the control. Quantitative changes in luciferase activity due to the recombinants proportionally represented the effect titin’s respective 3’UTR conferred on downstream post-transcriptional expression relative to the control. The effect due to titin’s shorter 3’UTR sequence was inconclusive; however, results illustrated that titin’s longer 3’UTR sequence caused a 35 percent decrease in protein expression. Secondary structural analysis of the two sequences revealed differential folding patterns that affect the stability and degree of MicroRNA-binding within titin’s variant 3’UTR sequences.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osvaldo Contreras ◽  
Fabio M. V. Rossi ◽  
Marine Theret

AbstractStriated muscle is a highly plastic and regenerative organ that regulates body movement, temperature, and metabolism—all the functions needed for an individual’s health and well-being. The muscle connective tissue’s main components are the extracellular matrix and its resident stromal cells, which continuously reshape it in embryonic development, homeostasis, and regeneration. Fibro-adipogenic progenitors are enigmatic and transformative muscle-resident interstitial cells with mesenchymal stem/stromal cell properties. They act as cellular sentinels and physiological hubs for adult muscle homeostasis and regeneration by shaping the microenvironment by secreting a complex cocktail of extracellular matrix components, diffusible cytokines, ligands, and immune-modulatory factors. Fibro-adipogenic progenitors are the lineage precursors of specialized cells, including activated fibroblasts, adipocytes, and osteogenic cells after injury. Here, we discuss current research gaps, potential druggable developments, and outstanding questions about fibro-adipogenic progenitor origins, potency, and heterogeneity. Finally, we took advantage of recent advances in single-cell technologies combined with lineage tracing to unify the diversity of stromal fibro-adipogenic progenitors. Thus, this compelling review provides new cellular and molecular insights in comprehending the origins, definitions, markers, fate, and plasticity of murine and human fibro-adipogenic progenitors in muscle development, homeostasis, regeneration, and repair.


2014 ◽  
Vol 5 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Suyan Li ◽  
Sampada Joshee ◽  
Anju Vasudevan

AbstractMidbrain GABA neurons, endowed with multiple morphological, physiological and molecular characteristics as well as projection patterns are key players interacting with diverse regions of the brain and capable of modulating several aspects of behavior. The diversity of these GABA neuronal populations based on their location and function in the dorsal, medial or ventral midbrain has challenged efforts to rapidly uncover their developmental regulation. Here we review recent developments that are beginning to illuminate transcriptional control of GABA neurons in the embryonic midbrain (mesencephalon) and discuss its implications for understanding and treatment of neurological and psychiatric illnesses.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2179-2189 ◽  
Author(s):  
M. Krause ◽  
M. Park ◽  
J.M. Zhang ◽  
J. Yuan ◽  
B. Harfe ◽  
...  

The E proteins of mammals, and the related Daughterless (DA) protein of Drosophila, are ubiquitously expressed helix-loop-helix (HLH) transcription factors that play a role in many developmental processes. We report here the characterization of a related C. elegans protein, CeE/DA, which has a dynamic and restricted distribution during development. CeE/DA is present embryonically in neuronal precursors, some of which are marked by promoter activity of a newly described Achaete-scute-like gene hlh-3. In contrast, we have been unable to detect CeE/DA in CeMyoD-positive striated muscle cells. In vitro gel mobility shift analysis detects dimerization of CeE/DA with HLH-3 while efficient interaction of CeE/DA with CeMyoD is not seen. These studies suggest multiple roles for CeE/DA in C. elegans development and provide evidence that both common and alternative strategies have evolved for the use of related HLH proteins in controlling cell fates in different species.


Development ◽  
2000 ◽  
Vol 127 (10) ◽  
pp. 2041-2051 ◽  
Author(s):  
A.K. Corsi ◽  
S.A. Kostas ◽  
A. Fire ◽  
M. Krause

The basic helix-loop-helix (bHLH) transcription factor Twist plays a role in mesodermal development in both invertebrates and vertebrates. In an effort to understand the role of the unique Caenorhabditis elegans Twist homolog, hlh-8, we analyzed mesodermal development in animals with a deletion in the hlh-8 locus. This deletion was predicted to represent a null allele because the HLH domain is missing and the reading frame for the protein is disrupted. Animals lacking CeTwist function were constipated and egg-laying defective. Both of these defects were rescued in transgenic mutant animals expressing wild-type hlh-8. Observing a series of mesoderm-specific markers allowed us to characterize the loss of hlh-8 function more thoroughly. Our results demonstrate that CeTwist performs an essential role in the proper development of a subset of mesodermal tissues in C. elegans. We found that CeTwist was required for the formation of three out of the four non-striated enteric muscles born in the embryo. In contrast, CeTwist was not required for the formation of the embryonically derived striated muscles. Most of the post-embryonic mesoderm develops from a single lineage. CeTwist was necessary for appropriate patterning in this lineage and was required for expression of two downstream target genes, but was not required for the expression of myosin, a marker of differentiation. Our results suggest that mesodermal patterning by Twist is an evolutionarily conserved function.


1998 ◽  
Vol 95 (16) ◽  
pp. 9424-9429 ◽  
Author(s):  
Stefan Berger ◽  
Markus Bleich ◽  
Wolfgang Schmid ◽  
Timothy J. Cole ◽  
Jörg Peters ◽  
...  

Mineralocorticoid receptor (MR)-deficient mice were generated by gene targeting. These animals had a normal prenatal development. During the first week of life, MR-deficient (−/−) mice developed symptoms of pseudohypoaldosteronism. They finally lost weight and eventually died at around day 10 after birth from dehydration by renal sodium and water loss. At day 8, −/− mice showed hyperkalemia, hyponatremia, and a strong increase in renin, angiotensin II, and aldosterone plasma concentrations. Methods were established to measure renal clearance and colonic transepithelial Na+ reabsorption in 8-day-old mice in vivo. The fractional renal Na+ excretion was elevated >8-fold. The glomerular filtration rate in −/− mice was not different from controls. The effect of amiloride on renal Na+ excretion and colonic transepithelial voltage reflects the function of amiloide-sensitive epithelial Na+ channels (ENaC). In −/− mice, it was reduced to 24% in the kidney and to 16% in the colon. There was, however, still significant residual ENaC-mediated Na+ reabsorption in both epithelia. RNase protection analysis of the subunits of ENaC and (Na++ K+)-ATPase did not reveal a decrease in −/− mice. The present data indicate that MR-deficient neonates die because they are not able to compensate renal Na+ loss. Regulation of Na+ reabsorption via MR is not achieved by transcriptional control of ENaC and (Na+ + K+)-ATPase in RNA abundance but by transcriptional control of other as yet unidentified genes. MR knockout mice will be a suitable tool for the search of these genes.


1995 ◽  
Vol 15 (4) ◽  
pp. 1870-1878 ◽  
Author(s):  
J Grayson ◽  
R S Williams ◽  
Y T Yu ◽  
R Bassel-Duby

Previous investigations have defined three upstream activation elements--CCAC, A/T, and TATA sequences--necessary for muscle-specific transcription of the myoglobin gene. In the present study, we demonstrate that these three sequences elements, prepared as synthetic oligonucleotide cassettes, function synergistically to constitute a cell-type-specific transcription unit. Previously, cognate binding factors that recognize the CCAC and TATA elements were identified. In this study we determine that the A/T element binds two nuclear factors, including myocyte enhancer factor-2 (MEF-2) and an apparently unknown factor we provisionally termed ATF35 (A/T-binding factor, 35 kDa). Mutations that alter in vitro binding of either MEF-2 or ATF35 to this site diminish promoter function in vivo. Functional synergism between factors binding the CCAC and A/T elements is sensitive to subtle mutations in the TATA sequence, recapitulating the unusual preference for specific TATA variants exhibited by the native myoglobin promoter. These results provide new insights into mechanisms that underlie the distinctive pattern of myoglobin gene regulation in mammalian muscle development and lay a foundation for further studies to elucidate general principles of transcriptional control of complex mammalian promoters through combinatorial actions of heterologous transcriptional factors.


1989 ◽  
Vol 131 (2) ◽  
pp. 430-438 ◽  
Author(s):  
Thierry Meinnel ◽  
Domenico Libri ◽  
Vincent Mouly ◽  
Danièle Gros ◽  
Marc Y. Fiszman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document