Development in Wastewater Treatment Research and Processes

2022 ◽  
2013 ◽  
Vol 864-867 ◽  
pp. 88-95 ◽  
Author(s):  
Zhi Jiao Liu ◽  
Yun Lng Yang

Coal coking wastewater is generated from coking, coal gas purification and coking product recovery process, its composition is complex and difficult to degrade. By introducing the coking wastewater treatment research and application, such as adsorption,coagulation and sedimentation, flue gas treatment and other physical methods, as well advanced oxidation, wet oxidation, Fenton reagent method, photocatalytic oxidation, ultrasonic oxidation, ozone oxidation method, electrochemical oxidation, supercritical water oxidation, incineration and plasma technology, this paper puts forward the trend of coking wastewater treatment technology.


2019 ◽  
Vol 80 (3) ◽  
pp. 541-550 ◽  
Author(s):  
Kito Ohmura ◽  
Christian M. Thürlimann ◽  
Marco Kipf ◽  
Juan Pablo Carbajal ◽  
Kris Villez

Abstract Today, the development and testing of methods for fault detection and identification in wastewater treatment research relies on two important assumptions: (i) that sensor faults appear at distinct times in different sensors and (ii) that any given sensor will function near-perfectly for a significant amount of time following installation. In this work, we show that such assumptions are unrealistic, at least for sensors built around an ion-selective measurement principle. Indeed, long-term exposure of sensors to treated wastewater shows that sensors exhibit fault symptoms that appear simultaneously and with similar intensity. Consequently, this suggests that future research should be reoriented towards methods that do not rely on the assumptions mentioned above. This study also provides the first empirically validated sensor fault model for wastewater treatment simulation, which is useful for effective benchmarking of both fault detection and identification methods and advanced control strategies. Finally, we evaluate the value of redundancy for remote sensor validation in decentralized wastewater treatment systems.


2018 ◽  
Vol 69 (05) ◽  
pp. 412-418 ◽  
Author(s):  
MOGA IOANA CORINA ◽  
ARDELEAN IOAN ◽  
PETRESCU GABRIEL ◽  
CRĂCIUN NICOLAE ◽  
POPA RADU

Textile industry processes produce some of the most heavily polluted wastewater worldwide. Wastewater from textile industry is also highly variable (it varies with time and among factories) and contains wide diversity of pollutants. This makes the treatment of textile industry effluents, complex, site-specific and expensive. Numerous combinations of wastewater treatment technologies are currently applied in the textile industry, yet methods that work for one emitter are often unsuitable, insufficient, not necessary or unsustainable to another. As textile industry evolves, its water treatment research also has to keep pace with increasing demands. The broader aim of the textile industry wastewater treatment is to maximize the efficiency of pollutant removal, while releasing effluents that society considers as being environmentally acceptable or safe. In the last ten years great strides have been made in the ability to lower the biological oxygen demand (BOD) and ammonium (NH4+) in wastewater. These advances elicit the question: can intensifying the usage of such technologies in the textile industry also increase its efficiency? The research team analysed water treatment by aerobic biomineralization via microbial biofilms immobilized on solid surfaces and hosted in Moving Bed Bio-Reactors (MBBRs). These biofilms are selected for carbon oxidation and ammonia oxidation. The authors compare the potential of active sludge biotreatment with the performance of MBBRs. The results are used to evaluate the potential of MBBRs as a cost-reducing solution in textile wastewater treatment plants. Our analysis supports that upgrading such stations to more heavily usage of MBBR biotechnology would increase their sustainability and environmental friendliness. The authors also discuss research directions and milestones for expanding the effects of MBBRs on the textile industry wastewater treatment.


2018 ◽  
Vol 1 (1) ◽  
pp. 6
Author(s):  
Malikhatul Hidayah

<p><em>Industrial waste water area that flows in the River Flood Canal Semarang can affect the environment if not done processing. Membrane is one alternative water treatment technologies with the principle of filtration. The presence of fouling is a problem encountered in the use of the membrane. In this study will be made of non-fouling nanofiltration membranes made from cellulose acetate. Manufacture of cellulose acetate membrane is accomplished by phase inversion method, which is changing the shape of the polymer solid phase into the liquid phase rich in solvent into solids (membrane) which is rich in polymer. Therefore, the aim of this study was to create a non-fouling nanofiltration membrane using cellulose acetate polymer as well as assess the effect of PEG additives and pre-treatment with UV light to the surface of the structure and performance of cellulose acetate membranes for produced water treatment. Research using cellulose acetate membranes for wastewater treatment is done by varying the type of PEG 1500 and 4000, variations of PEG of 1, 3 and 5% by weight and a UV irradiation for 10, 20 and 30 seconds. The research followed by testing the performance of the membrane in wastewater treatment using a dead-end filtration with the parameters of flux and rejection. Characterization of the membrane was analyzed with SEM and FTIR. Analysis of the results was conducted to determine the levels of turbidity, TDS, COD, Ca<sup>2+</sup>, S<sup>2-</sup> and oil in waste water before and after passing through the membrane.</em><em></em></p>


2018 ◽  
Author(s):  
Kito Ohmura ◽  
Christian M. Thürlimann ◽  
Marco Kipf ◽  
Juan Pablo Carbajal ◽  
Kris Villez

The development and validation of methods for fault detection and identification in wastewater treatment research today relies on two important assumptions: {\em (i)} that sensor faults appear at distinct times in different sensors and {\em (ii)} that any given sensor will function near-perfectly for a significant amount of time following installation. In this work, we show that such assumptions are unrealistic, at least for sensors built around an ion-selective measurement principle. Indeed, long-term exposure of sensors to treated wastewater shows that sensors exhibit important fault symptoms that appear simultaneously and with similar intensity. Consequently, our work suggests that focus of research on methods for fault detection and identification should be reoriented towards methods that do not rely on the assumptions mentioned above. This study also provides the very first empirically validated sensor fault model for wastewater treatment simulation and we recommend its use for effective benchmarking of both fault detection and identification methods and advanced control strategies. Finally, we evaluate the value of redundancy for the purpose of remote sensor validation in decentralized wastewater treatment systems.


2003 ◽  
Vol 48 (1) ◽  
pp. 1-9 ◽  
Author(s):  
J.A. Wilsenach ◽  
M. Maurer ◽  
T.A. Larsen ◽  
M.C.M. van Loosdrecht

Wastewater treatment was primarily implemented to enhance urban hygiene. Treatment methods were improved to ensure environmental protection by nutrient removal processes. In this way, energy is consumed and resources like potentially useful minerals and drinking water are disposed of. An integrated management of assets, including drinking water, surface water, energy and nutrients would be required to make wastewater management more sustainable. Exergy analysis provides a good method to quantify different resources, e.g. utilisable energy and nutrients. Dilution is never a solution for pollution. Waste streams should best be managed to prevent dilution of resources. Wastewater and sanitation are not intrinsically linked. Source separation technology seems to be the most promising concept to realise a major breakthrough in wastewater treatment. Research on unit processes, such as struvite recovery and treatment of ammonium rich streams, also shows promising results. In many cases, nutrient removal and recovery can be combined, with possibilities for a gradual change from one system to another.


Sign in / Sign up

Export Citation Format

Share Document