A live-cell high-throughput screening assay for identification of fatty acid uptake inhibitors

2005 ◽  
Vol 336 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Hong Li ◽  
Paul N. Black ◽  
Concetta C. DiRusso
2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Hong Li ◽  
Lori Bivins ◽  
Ravi Vatsyayan ◽  
Paul Black ◽  
Concetta DiRusso

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sadaf Kalsum ◽  
Blanka Andersson ◽  
Jyotirmoy Das ◽  
Thomas Schön ◽  
Maria Lerm

Abstract Background Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. Results Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. Conclusions Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs.


2021 ◽  
pp. 58-60
Author(s):  
Anand Shanker Singh ◽  
G . Radhika ◽  
R . Praveen Kumar ◽  
Debarshi Jana

Inhibition of uptake of fatty acids in non-adipose tissues seems an attractive mechanism for treatment of lipotoxicity, dyslipidemia and other elements related to metabolic syndrome and obesity. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterication with coenzyme A. To date, only inhibitors specic to FATP1 and FATP4 have been identied. Here we characterize a FATP2-specic fatty acid uptake inhibitor, CB5. Identied in a high throughput screening in yeast transformed with humanFATP2, CB5 is effective in inhibiting the uptake of fatty acid at low micro-molar ranges in cell lines that are models for intestines, liver, muscle, pancreas and adipose tissue with varying potencies. Inhibition was also specic for long and very-long chain fatty acids and not for medium chain fatty acids, which are transported by diffusion. Finally, CB5 was effective in protecting the cell lines that are models for liver and pancreas and primary liver cells from lipotoxic effects of saturated fatty acid, palmitic acid. High throughput screening also identied clozapine and chlorpromazine, atypical antipsychotics drugs, as inhibitors of FATP2-mediated fatty acid uptake in yeast system. However, atypical antipsychotics were ineffective in inhibiting the uptake of FAanalog C1-BODIPY-C12 in HepG2 cells. They were also ineffective in protecting HepG2 cells from the lipotoxic effects generated by saturated fatty acid compared to CB5 that exhibited protection to the cells, demonstrating that they are not effective inhibitors of fatty acid transport compared with CB5.


2018 ◽  
Vol 20 (9) ◽  
pp. 804-819 ◽  
Author(s):  
Mohamed Boudjelal ◽  
Ana Maria Ruiz-Avendano ◽  
Gonzalo Colmenarejo ◽  
Sergio A. Senar-Sancho ◽  
Ashley Barnes ◽  
...  

2021 ◽  
pp. 247255522110006
Author(s):  
Lesley-Anne Pearson ◽  
Charlotte J. Green ◽  
De Lin ◽  
Alain-Pierre Petit ◽  
David W. Gray ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5′ end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3′-5′ exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 808
Author(s):  
Maurice Steenhuis ◽  
Corinne M. ten Hagen-Jongman ◽  
Peter van Ulsen ◽  
Joen Luirink

The structural integrity of the Gram-negative cell envelope is guarded by several stress responses, such as the σE, Cpx and Rcs systems. Here, we report on assays that monitor these responses in E. coli upon addition of antibacterial compounds. Interestingly, compromised peptidoglycan synthesis, outer membrane biogenesis and LPS integrity predominantly activated the Rcs response, which we developed into a robust HTS (high-throughput screening) assay that is suited for phenotypic compound screening. Furthermore, by interrogating all three cell envelope stress reporters, and a reporter for the cytosolic heat-shock response as control, we found that inhibitors of specific envelope targets induce stress reporter profiles that are distinct in quality, amplitude and kinetics. Finally, we show that by using a host strain with a more permeable outer membrane, large-scaffold antibiotics can also be identified by the reporter assays. Together, the data suggest that stress profiling is a useful first filter for HTS aimed at inhibitors of cell envelope processes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129234 ◽  
Author(s):  
Lauren Forbes ◽  
Katherine Ebsworth-Mojica ◽  
Louis DiDone ◽  
Shao-Gang Li ◽  
Joel S. Freundlich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document