5-Ethynyl-2′-deoxycytidine as a new agent for DNA labeling: Detection of proliferating cells

2011 ◽  
Vol 417 (1) ◽  
pp. 112-121 ◽  
Author(s):  
Dezhong Qu ◽  
Guoxing Wang ◽  
Zhe Wang ◽  
Li Zhou ◽  
Weilin Chi ◽  
...  
2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


1995 ◽  
Vol 74 (06) ◽  
pp. 1591-1596 ◽  
Author(s):  
H Matsuno ◽  
J M Stassen ◽  
M F Hoylaerts ◽  
J Vermylen ◽  
H Deckmyn

SummaryNeointima formation was induced in the hamster carotid artery by mechanical intraluminal injury with a catheter covered with roughened dental cement. Neointimal thickening occurred as early as 7 days after denudation and further increased during the next 1 to 2 weeks. Proliferation indices of smooth muscle cells (SMCs) showed the highest proportion of proliferating cells in the media and neointima respectively 1 and 5 days after the vascular injury. Transmission and scanning electron microscopy of damaged carotid artery sections as well as immuno-histochemical stainings of von Willebrand factor (vWF) confirmed that reendothelialization was progressive and already complete on day 14, at which time the neointima formation was almost complete.In order to pharmacologically characterize this model further, the effects on neointima formation of trapidil (triazolopyrimidine), a platelet-derived growth factor (PDGF) antagonist, and captopril, an angiotensin converting enzyme inhibitor, were investigated. Trapidil administered orally twice daily at total doses of 25, 50 and 100 mg/kg/day, started 3 days prior to infliction of injury and up to 7 or 14 days after the catheterization, significantly reduced neointima formation. Captopril administered orally three times daily at a total dose of 100 mg/kg/day, equally reduced neointima formation, with 100 mg/kg/day trapidil being more effective than 100 mg/kg/day captopril 7 days after injury. When the treatment by either one of these drugs was arrested on day 7, neointima formation resumed quickly.The hamster appears to be a small, reproducible and fast model for the study of SMC proliferation, requiring only relatively small amounts of experimental drugs. The model furthermore is sensitive to substances known to reduce neointima formation in other animal models.


1965 ◽  
Vol 13 (01) ◽  
pp. 035-046 ◽  
Author(s):  
R. L Henry

SummaryWhite blood cells can no longer be considered simple trapped inclusions within thrombi. Their numbers in thrombi relative to blood counts increase with time. They appear to come from the blood flowing past the thrombus. They appear to migrate by amoeboid movement into the thrombic mass. Polymorphonuclear neutrophils have been shown to be lytic to fibrin and other proteins and thus can contribute to thrombus dissolution. There is increasing evidence that neutrophils may impart important cytotrophic function to proliferating cells during thrombus organization. Eosinophils are known to carr profibrinolysin and will release this precursor at sites of fibrin deposition. Mononuclear leukocytes can transform into fibroblasts in tissue culture and I consider a thrombus an ideal tissue culture medium. All of these cells can contribute to thrombus dissolution simply by mechanical weakening of the mass by migration into it, releasing enzymes, and allowing blood flow to carry away pieces of the thrombus as emboli. I extend my perspective on thrombosis by considering these intravascular solids as cell tissue cultures rather than simple blood clots or platelet aggregates.


2019 ◽  
Vol 19 (17) ◽  
pp. 1521-1534 ◽  
Author(s):  
Anatoly Sorokin ◽  
Vsevolod Shurkhay ◽  
Stanislav Pekov ◽  
Evgeny Zhvansky ◽  
Daniil Ivanov ◽  
...  

Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.


2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


Sign in / Sign up

Export Citation Format

Share Document