scholarly journals Histone methyltransferase SETDB1 inhibits TGF-β-induced epithelial–mesenchymal transition in pulmonary fibrosis by regulating SNAI1 expression and the ferroptosis signaling pathway

Author(s):  
Tiantian Liu ◽  
Pengli Xu ◽  
Shaorui Ke ◽  
Haoran Dong ◽  
Mengmeng Zhan ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Fei Gao ◽  
Yun Zhang ◽  
Zhizhou Yang ◽  
Mengmeng Wang ◽  
Zhiyi Zhou ◽  
...  

Arctigenin (ATG), a major bioactive substance of Fructus Arctii, counters renal fibrosis; however, whether it protects against paraquat (PQ)-induced lung fibrosis remains unknown. The present study was to determine the effect of ATG on PQ-induced lung fibrosis in a mouse model and the underlying mechanism. Firstly, we found that ATG suppressed PQ-induced pulmonary fibrosis by blocking the epithelial-mesenchymal transition (EMT). ATG reduced the expressions of Vimentin and α-SMA (lung fibrosis markers) induced by PQ and restored the expressions of E-cadherin and Occludin (two epithelial markers) in vivo and in vitro. Besides, the Wnt3a/β-catenin signaling pathway was significantly activated in PQ induced pulmonary fibrosis. Further analysis showed that pretreatment of ATG profoundly abrogated PQ-induced EMT-like phenotypes and behaviors in A549 cells. The Wnt3a/β-catenin signaling pathway was repressed by ATG treatment. The overexpression of Wnt3a could weaken the therapeutic effect of ATG in A549 cells. These findings suggested that ATG could serve as a new therapeutic candidate to inhibit or even reverse EMT-like changes in alveolar type II cells during PQ-induced lung fibrosis, and unraveled that the Wnt3a/β-catenin pathway might be a mechanistic tool for ATG to control pulmonary fibrosis.


RSC Advances ◽  
2019 ◽  
Vol 9 (14) ◽  
pp. 8104-8112 ◽  
Author(s):  
Yue Qiu ◽  
Xue Pan ◽  
Yahui Hu

Pulmonary fibrosis is a chronic and progressive lung disease which results in a loss of pulmonary function and eventually respiratory failure.


2020 ◽  
Vol 21 ◽  
Author(s):  
Yanhong Liu ◽  
Hongguang Nie ◽  
Yan Ding ◽  
Yapeng Hou ◽  
Kejun Mao ◽  
...  

: Pulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that involve in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.


Sign in / Sign up

Export Citation Format

Share Document