Ultrasensitive ratiometric detection of Pb2+ using DNA tetrahedron-mediated hyperbranched hybridization chain reaction

2021 ◽  
Vol 1147 ◽  
pp. 170-177
Author(s):  
Pingping Ji ◽  
Guimei Han ◽  
Yan Huang ◽  
Hongxin Jiang ◽  
Qiwen Zhou ◽  
...  
2020 ◽  
Vol 56 (49) ◽  
pp. 6668-6671
Author(s):  
Meng-Mei Lv ◽  
Zhan Wu ◽  
Ru-Qin Yu ◽  
Jian-Hui Jiang

A well-defined 3D DNA nanostructure was developed by combination of DNA tetrahedron and Y-shaped DNA, which allowed multiplexed, signal amplified fluorescent imaging of miRNAs in living cells via hybridization chain reaction.


2019 ◽  
Vol 55 (77) ◽  
pp. 11551-11554 ◽  
Author(s):  
Liping Zhu ◽  
Jing Ye ◽  
Shuang Wang ◽  
Mengxia Yan ◽  
Qiuju Zhu ◽  
...  

A novel ratiometric electrochemiluminescence–electrochemical hybrid biosensor with high accuracy and reproducibility was fabricated for the ultrasensitive detection of miRNA-133a.


2019 ◽  
Vol 43 (24) ◽  
pp. 9458-9465
Author(s):  
Xiquan Yue ◽  
Lihong Su ◽  
Xu Chen ◽  
Junfeng Liu ◽  
Longpo Zheng ◽  
...  

The strategy is based on small molecule-mediated hybridization chain reaction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Li ◽  
Wenting Yu ◽  
Jiaojiao Zhang ◽  
Yuhang Dong ◽  
Xiaohui Ding ◽  
...  

AbstractDNA nanostructures have been demonstrated as promising carriers for gene delivery. In the carrier design, spatiotemporally programmable assembly of DNA under nanoconfinement is important but has proven highly challenging due to the complexity–scalability–error of DNA. Herein, a DNA nanotechnology-based strategy via the cascade hybridization chain reaction (HCR) of DNA hairpins in polymeric nanoframework has been developed to achieve spatiotemporally programmable assembly of DNA under nanoconfinement for precise siRNA delivery. The nanoframework is prepared via precipitation polymerization with Acrydite-DNA as cross-linker. The potential energy stored in the loops of DNA hairpins can overcome the steric effect in the nanoframework, which can help initiate cascade HCR of DNA hairpins and achieve efficient siRNA loading. The designer tethering sequence between DNA and RNA guarantees a triphosadenine triggered siRNA release specifically in cellular cytoplasm. Nanoframework provides stability and ease of functionalization, which helps address the complexity–scalability–error of DNA. It is exemplified that the phenylboronate installation on nanoframework enhanced cellular uptake and smoothed the lysosomal escape. Cellular results show that the siRNA loaded nanoframework down-regulated the levels of relevant mRNA and protein. In vivo experiments show significant therapeutic efficacy of using siPLK1 loaded nanoframework to suppress tumor growth.


The Analyst ◽  
2013 ◽  
Vol 138 (17) ◽  
pp. 4870 ◽  
Author(s):  
Liu Tong ◽  
Jie Wu ◽  
Jie Li ◽  
Huangxian Ju ◽  
Feng Yan

Sign in / Sign up

Export Citation Format

Share Document