A low-complexity attitude control method for large-angle agile maneuvers of a spacecraft with control moment gyros

2017 ◽  
Vol 139 ◽  
pp. 486-493 ◽  
Author(s):  
Shota Kawajiri ◽  
Saburo Matunaga
Author(s):  
Matteo Facchino ◽  
Atsushi Totsuka ◽  
Elisa Capello ◽  
Satoshi Satoh ◽  
Giorgio Guglieri ◽  
...  

AbstractIn the last years, Control Moment Gyros (CMGs) are widely used for high-speed attitude control, since they are able to generate larger torque compared to “classical” actuation systems, such as Reaction Wheels . This paper describes the attitude control problem of a spacecraft, using a Model Predictive Control method. The features of the considered linear MPC are: (i) a virtual reference, to guarantee input constraints satisfaction, and (ii) an integrator state as a servo compensator, to reduce the steady-state error. Moreover, the real-time implementability is investigated using an experimental testbed with four CMGs in pyramidal configuration, where the capability of attitude control and the optimization solver for embedded systems are focused on. The effectiveness and the performance of the control system are shown in both simulations and experiments.


Author(s):  
Jixiang Fan ◽  
Di Zhou

Dynamic equations describing the attitude motion of flexible spacecraft with scissored pairs of control moment gyroscopes are established. A nonlinear controller is designed to drive the flexible spacecraft to implement three-axis large-angle attitude maneuvers with the vibration suppression. Singularity analysis for three orthogonally mounted scissored pairs of control moment gyros shows that there exists no internal singularity in this configuration. A new pseudo-inverse steering law is designed based on the synchronization of gimbal angles of the twin gyros in each pair. To improve the synchronization performance, an adaptive nonlinear feedback controller is designed for each pairs of control moment gyros by using the stability theory of Lyapunov. Simulation results are provided to show the validity of the controllers and the steering law.


2013 ◽  
Vol 419 ◽  
pp. 673-681
Author(s):  
Xiao Xiao Cai ◽  
Jin Jie Wu ◽  
Kun Liu

Based on the mission requirements of agile satellite, the control method of large angle maneuver was investigated in this paper. The single gimbal control moment gyroscope (sgcmg) of pyramid configuration is taken as the executor of the satellite. In order to avoid the singularity of sgcmgs, robust pseudo-inverse steering logic is used. An attitude active disturbance rejection controller (adrc) was designed. The expected attitude maneuver information that got by gauss pseudo-spectral method (gpm) took the place of that got by tracking differentiator (td). The constraints of satellite and sgcmgs are considered. Dynamics decoupling and disturbance observation of satellite were realized by using nonlinear extended state observer (neso). Then based on neso, nonlinear error feedback controller (nlsef) effectively suppresses the disturbance. The simulation results show that the attitude active disturbance rejection controller has steady control performance and can reject the disturbance better.


2016 ◽  
Vol 23 (2) ◽  
pp. 167-180 ◽  
Author(s):  
Peiling Cui ◽  
Jingxian He ◽  
Jiancheng Fang ◽  
Xiangbo Xu ◽  
Jian Cui ◽  
...  

Imbalance vibration control for rotor is the main factor affecting attitude control performance for satellite using magnetically suspended control moment gyro (MSCMG). The method for adaptive imbalance vibration control for the rotor of variable-speed MSCMG with active-passive magnetic bearings is investigated in this paper. Firstly, on the basis of feedforward compensation, a rotor model for the imbalance vibration of variable-speed MSCMG with active-passive magnetic bearings is built, and the main factor affecting imbalance vibration compensation is also analyzed. Then, power amplifier parameter modifier with control switches is designed to eliminate the effects of time-varying parameters on the imbalance vibration compensation precision. The adaptive imbalance vibration control based on this modifier not only has high compensation precision, but also can control the frequency of parameter adjustment according to the compensation precision. Besides, since the passive magnetic bearing displacement stiffness of the rotor of variable-speed MSCMG with active-passive magnetic bearings cannot be obtained accurately, displacement stiffness modifier is employed. Finally, stability analysis is made on the imbalance vibration control system, and the range of rotation speed to ensure system stability is derived. Simulation results show that, imbalance vibration control method proposed in this paper can suppress the imbalance vibration of the rotor of variable-speed MSCMG with active-passive magnetic bearings effectively and has high precision.


Author(s):  
Z Yu ◽  
Y Guo ◽  
L Wang ◽  
L Wu

This paper presents the large angle attitude manoeuvre control design of a single-axis flexible spacecraft system that consists of a central rigid body and a cantilever beam with bonded piezoelectric sensor/actuator pairs as a flexible appendage. The proposed control strategy combines the attitude controller designed by the adaptive robust control technique with the active vibration controller designed by the positive position feedback control method. The desired angular position of the spacecraft is planned and an adaptive robust attitude control approach based on a projection type adaptation law is proposed to track the planned path and to achieve precise attitude manoeuvre control. Meanwhile, the positive position feedback control method is applied to actively increase the damping of the flexible appendage and to suppress the residual vibration induced by manoeuvre. Improved transient and steady state performance during and after large angle attitude manoeuvre can be both achieved by integration of the technical merits of all these control methods. Analytical and numerical results illustrate the effectiveness of this approach.


Author(s):  
Yuki Bunryo ◽  
Satoshi Satoh ◽  
Yasuhiro Shoji ◽  
Katsuhiko Yamada

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Luiz C. G. de Souza ◽  
Victor M. R. Arena

An experimental attitude control algorithm design using prototypes can minimize space mission costs by reducing the number of errors transmitted to the next phase of the project. The Space Mechanics and Control Division (DMC) of INPE is constructing a 3D simulator to supply the conditions for implementing and testing satellite control hardware and software. Satellite large angle maneuver makes the plant highly nonlinear and if the parameters of the system are not well determined, the plant can also present some level of uncertainty. As a result, controller designed by a linear control technique can have its performance and robustness degraded. In this paper the standard LQR linear controller and the SDRE controller associated with an SDRE filter are applied to design a controller for a nonlinear plant. The plant is similar to the DMC 3D satellite simulator where the unstructured uncertainties of the system are represented by process and measurements noise. In the sequel the State-Dependent Riccati Equation (SDRE) method is used to design and test an attitude control algorithm based on gas jets and reaction wheel torques to perform large angle maneuver in three axes. The SDRE controller design takes into account the effects of the plant nonlinearities and system noise which represents uncertainty. The SDRE controller performance and robustness are tested during the transition phase from angular velocity reductions to normal mode of operation with stringent pointing accuracy using a switching control algorithm based on minimum system energy. This work serves to validate the numerical simulator model and to verify the functionality of the control algorithm designed by the SDRE method.


Sign in / Sign up

Export Citation Format

Share Document