Mechanical analysis of a Solar Array hinge based on a 180∘ folded flexible printed circuit board

Author(s):  
F. Yves Bartsch ◽  
Patric Seefeldt ◽  
Torben Wippermann ◽  
Siebo Reershemius
Author(s):  
Chao Sun ◽  
Roman Mikhaylov ◽  
Yongqing Fu ◽  
Fangda Wu ◽  
Hanlin Wang ◽  
...  

2015 ◽  
Vol 11 (6) ◽  
pp. 1366-1377 ◽  
Author(s):  
Jinn-Tsong Tsai ◽  
Chorng-Tyan Lin ◽  
Cheng-Chung Chang ◽  
Jyh-Horng Chou

Author(s):  
Thanh Huy Phung ◽  
Jaehyeong Jeong ◽  
Anton Nailevich Gafurov ◽  
Inyoung Kim ◽  
Sung Yong Kim ◽  
...  

2018 ◽  
Vol 193 (3-4) ◽  
pp. 578-584 ◽  
Author(s):  
Xavier de la Broïse ◽  
Alain Le Coguie ◽  
Jean-Luc Sauvageot ◽  
Claude Pigot ◽  
Xavier Coppolani ◽  
...  

2015 ◽  
Vol 2015 (1) ◽  
pp. 000169-000178
Author(s):  
John Torok ◽  
Shawn Canfield ◽  
Suraush Khambati ◽  
Robert Mullady ◽  
Budy Notohardjono ◽  
...  

Recent high-end server designs have included new Input / Output (I/O) printed circuit board (PCB) assemblies consisting of a variety of form factors, electronic design layouts, and packaging assembly characteristics. To insure the required functional and reliability aspects are established and maintained, new mechanical analysis and verification testing techniques have been recently devised. A description of the design application set, the analysis tools and techniques applied, and the verification testing completed, including the associated measurement techniques as well as post-testing analysis methods and results are presented. Also included are the recent PCB raw card characterization efforts whose results have been applied as material property inputs to the analysis to improve analytical-to-empirical correlation. Included within the application set are both the use of custom designed cards as well as industry standard, original equipment manufacturer (OEM) cards that are packaged within custom enclosures. Given packaged and unpackaged (i.e., as installed in a higher-level rack system assembly) fragility testing requirements, new analysis techniques exploiting the capabilities of LS-DYNA have been used to provide a predictive means to support both initial as well as iterative design levels. In addition, these analysis results are also used to identify locations for measurement sensor placement employed during mechanical verification testing. Thermal shock and mechanical shock and vibration verification testing details and results are provided describing the conditions applied to simulate assembly shipping conditions, both as packaged as well as in situ to the higher-level of assembly. Included with this is a discussion with respect to post-test analysis techniques and results, including the use of both microscopic cross-section analysis as well as dye-pry assessments. Concluding, continued and future activities are described as “best practices” for the application of this methodology as part of the end-to-end development process.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1077
Author(s):  
Marcus A. Hintermüller ◽  
Bernhard Jakoby

We present a valveless microfluidic pump utilizing an oscillating membrane made from a flexible printed circuit board. The microfluidic channel is fabricated by a 3D printing process and features diffuser/nozzle structures to obtain a directed flow; the flexible membrane is bonded to the channel. The membrane is actuated via Lorentz forces to accomplish out-of-plane motions and push the fluid through the channel. A permanent magnet provides the static magnetic field required for the actuation. The simple fabrication method can potentially be used for inexpensive mass fabrication for disposable devices.


Sign in / Sign up

Export Citation Format

Share Document