On diffusion paths with “horns” and the formation of single phase layers in multiphase diffusion couples

2005 ◽  
Vol 53 (14) ◽  
pp. 3775-3781 ◽  
Author(s):  
Hongwei Yang ◽  
J.E. Morral ◽  
Yunzhi Wang
2008 ◽  
Vol 1128 ◽  
Author(s):  
Chihiro Asami ◽  
Yoshisato Kimura ◽  
Takuji Kita ◽  
Yoshinao Mishima

AbstractHalf-Heusler compound TiNiSn is one of the most promising candidates of thermoelectric materials which can be used to directly convert the waste heat to clean electric energy at high temperatures (around 1000 K). Thermoelectric power generation is an appealing approach for conserving energy and preserving the global environment. Half-Heusler compounds have the cubic C1b type ordered structure and show semiconducting behavior when their valence electron count (VEC) is around 18. TiNiSn is the most attractive one not only because it has excellent thermoelectric properties but also it consists of eco-friendly elements which are neither toxic nor costly. However, TiNiSn has a bothersome problem that fabrication of single phase TiNiSn alloy is quite difficult. We have found that TiNiSn phase forms by the ternary peritectic reaction. Thereby, inevitable non-equilibrium solidification results in the formation of impurity coexisting phases which tend to decrease thermoelectric properties. In the present work, to establish the basis of new fabrication processes for TiNiSn alloys, we have started from the investigation on the diffusion paths which are closely related to the formation of TiNiSn phase. The diffusion behavior was evaluated using solid/liquid diffusion couples composed of the binary Ti-Ni intermetallic compounds and Sn liquid phase, where we have selected TiNi, TiNi3 and Ti2Ni as solid phases for instance. The most interesting result is that the single-phase TiNiSn phase layer forms at the TiNi/Sn(L) interface during annealing at 1073 K for only 1 h. Moreover, faceted grains of TiNiSn single-crystal grow at the interface toward the liquid Sn phase. We have confirmed two interesting microstructural features using EBSD analyses. One is that most of these TiNiSn single-crystals have the same crystallographic orientation, and the other is that TiNiSn phase layer formed on the TiNi side of the interface consists of very fine sub-microns grains. While TiNiSn solely forms at the TiNi interface, Heusler TiNi2Sn also forms with TiNiSn at the TiNi3 interface and Ti6Sn5 tends to coexist at the Ti2Ni interface.


1994 ◽  
Vol 42 (11) ◽  
pp. 3887-3894 ◽  
Author(s):  
William D. Hopfe ◽  
J.E. Morral

2008 ◽  
Vol 595-598 ◽  
pp. 199-206 ◽  
Author(s):  
R.R. Mohanty ◽  
Yong Ho Sohn

Evolution of interdiffusion microstructures was examined in ternary Ni-Cr-Al solid-tosolid diffusion couples using two-dimensional (2D) phase field simulation. Utilizing Cahn-Hilliard and Allen-Cahn equations, multiphase diffusion couples containing of fcc-γ and B2-β solid solution phases were simulated with alloys of different compositions and phase contents. Chemical mobility as a function of composition with constant gradient energy coefficients was used in the simulation. Simulated microstructures in γ+β/γ and γ+β/γ+β diffusion couples were compared with the experimental microstructures reported in literature. As observed experimentally, the model predicted the recession of γ+β region in the γ+β/γ couple and a stationary interface in γ+β/γ+β couple. Concentration profiles developed across the diffusion couples demonstrated that the interdiffusion occurs in the γ phase as well as in the γ+β region. Formation of single-phase γ and β layers near the interface of γ+β/γ+β couples was also investigated using the volume fraction profile obtained from the simulated microstructure.


2007 ◽  
Vol 266 ◽  
pp. 83-99 ◽  
Author(s):  
Kevin M. Day ◽  
Mysore A. Dayananda

Selected diffusion couples investigated in the Cu-based and Fe-based multicomponent systems are examined for diffusion path development, zero-flux planes, uphill diffusion, and internal constraints for diffusion paths. The couples are analyzed for interdiffusion fluxes and interdiffusion coefficients with the aid of the “MultiDiFlux” program. Eigenvalues and eigenvectors are also determined from the interdiffusion coefficients determined over various ranges of composition in the diffusion zone. Slopes of diffusion paths at selected sections, including the path ends, are related to interdiffusion coefficients, interdiffusion fluxes and/or eigenvectors. These relations are explored with selected single phase diffusion couples in the Cu-Ni-Zn and Fe-Ni-Al systems and the calculated path slopes are compared with those directly determined from the concentration profiles. Relations between the gradient of interdiffusion flux and the concentration gradient are examined for each component in a two-phase Cu-Ni-Zn diffusion couple. The research is supported by the National Science Foundation.


2015 ◽  
Vol 4 ◽  
pp. 3-21
Author(s):  
Mysore A. Dayananda

There exist several interesting phenomena and observations reported in literature for isothermal diffusion in multicomponent systems. Such phenomena include uphill diffusion, development of zero-flux planes and flux reversals for individual components, flux reversals at interfaces, and instability at interfaces and multiphase layer development. In addition, uncommon diffusion structures exhibiting unusual diffusion paths can develop in both single phase and multiphase diffusion assemblies. An overview of such phenomena is presented to highlight the role of interactions among diffusing components with the aid of selected diffusion studies carried out in multicomponent alloy systems, aluminides, silicides, and nuclear fuels.


2006 ◽  
Vol 54 (20) ◽  
pp. 5501-5507 ◽  
Author(s):  
K. Wu ◽  
J.E. Morral ◽  
Y. Wang

2019 ◽  
Vol 38 (2019) ◽  
pp. 151-157 ◽  
Author(s):  
Bartek Wierzba ◽  
Wojciech J. Nowak ◽  
Daria Serafin

AbstractThe interdiffusion in Ti-based alloys was studied. It was shown that during diffusion at 1,123 K formation of four intermetallic phases occurs. The diffusion paths for six different diffusion couples were determined. Moreover, the entropy production was calculated – the approximation used for determination of the sequence of intermetallic phase formation. In theoretical analysis, the intrinsic diffusion coefficients were determined from the modified Wagner method.


2011 ◽  
Vol 689 ◽  
pp. 123-129
Author(s):  
Yong Sheng Li ◽  
Yan Zhou Yu ◽  
Xiao Lin Cheng ◽  
Guang Chen

The phase field simulation of interface movement and interdiffusion microstructure in a binary diffusion couples was developed. The diffusion couples with nonequilibrium concentration for single phase or single phase and two-phase including the temperature and mobility effects were studied. It’s shown that the interface movement and the atoms diffusion direction were determined by the magnitude of relative concentration difference between the initial concentration and the equilibrium concentration, the distance of interface movement and interdiffusion flux increases as the temperature or the mobility increasing, and the large mobility makes the particles coarsening faster.


1997 ◽  
Vol 12 (10) ◽  
pp. 2518-2521 ◽  
Author(s):  
J. Schäfer ◽  
W. Sigmund ◽  
S. Roy ◽  
F. Aldinger

Lead zirconate titanate powders are derived from a novel aqueous-based citrate-nitrate/oxynitrate sol-gel combustion process. Aqueous solutions of metal nitrates or oxynitrates are transformed into gels with citric acid under heating. The received gels undergo a self-propagating combustion reaction on heating to 180 °C and subsequently yield voluminous ashes. These ashes form single phase perovskite Pb(Zr0.53Ti0.47)O3 powder with a specific surface area of 8 m2/g upon calcination at 550 °C. The ashes show a homogeneous distribution of lead, zirconium, and titanium ions which guarantees short diffusion paths in solid state formation of PZT perovskite. The redox behavior of the gels was studied with the help of DTA experiments. Powders are characterized in terms of XRD, SEM, and EDX analysis.


Sign in / Sign up

Export Citation Format

Share Document