scholarly journals Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

2015 ◽  
Vol 46 (5) ◽  
pp. 1860-1877 ◽  
Author(s):  
Ercan Cakmak ◽  
Hahn Choo ◽  
Jun-Yun Kang ◽  
Yang Ren
2011 ◽  
Vol 702-703 ◽  
pp. 574-577 ◽  
Author(s):  
Daniel Goran ◽  
G. Ji ◽  
M. N. Avettand-Fènoël ◽  
R. Taillard

Texture and microstructure of FSW joined Al and Cu sheets were investigated by means of electron backscatter diffraction (EBSD) technique. The analysis has revealed a strong texture evolution on both sides of the weld interface as well as a very complex microstructure. Grains were found to be fully recrystallized on both sides of the weld and with different average diameters at different specific zones of the weld.


2019 ◽  
Vol 52 (4) ◽  
pp. 828-843 ◽  
Author(s):  
Dorian Delbergue ◽  
Damien Texier ◽  
Martin Lévesque ◽  
Philippe Bocher

X-ray diffraction (XRD) is a widely used technique to evaluate residual stresses in crystalline materials. Several XRD measurement methods are available. (i) The sin2ψ method, a multiple-exposure technique, uses linear detectors to capture intercepts of the Debye–Scherrer rings, losing the major portion of the diffracting signal. (ii) The cosα method, thanks to the development of compact 2D detectors allowing the entire Debye–Scherrer ring to be captured in a single exposure, is an alternative method for residual stress measurement. The present article compares the two calculation methods in a new manner, by looking at the possible measurement errors related to each method. To this end, sets of grains in diffraction condition were first identified from electron backscatter diffraction (EBSD) mapping of Inconel 718 samples for each XRD calculation method and its associated detector, as each method provides different sets owing to the detector geometry or to the method specificities (such as tilt-angle number or Debye–Scherrer ring division). The X-ray elastic constant (XEC) ½S 2, calculated from EBSD maps for the {311} lattice planes, was determined and compared for the different sets of diffracting grains. It was observed that the 2D detector captures 1.5 times more grains in a single exposure (one tilt angle) than the linear detectors for nine tilt angles. Different XEC mean values were found for the sets of grains from the two XRD techniques/detectors. Grain-size effects were simulated, as well as detector oscillations to overcome them. A bimodal grain-size distribution effect and `artificial' textures introduced by XRD measurement techniques are also discussed.


2012 ◽  
Vol 630 ◽  
pp. 35-40
Author(s):  
K.H. Jung ◽  
B. Ahn ◽  
S. Lee ◽  
D.S. Choi ◽  
Y.S. Lee ◽  
...  

In this research, the effect of casting methods on the workability of magnesium alloy ZK60A was investigated by comparing two different billets, fabricated by semi-continuous casting and die casting. To determine the workability of the materials, uniaxial compression tests were conducted at different elevated temperatures and strain rate of 0.01/s. In addition, the X-ray inspection system and electron backscatter diffraction (EBSD) were employed to compare their internal defects and microstructures, respectively. The workability of ZK60A depending on the casting methods is discussed based on the obtained experimental results.


2007 ◽  
Vol 537-538 ◽  
pp. 297-302
Author(s):  
Tibor Berecz ◽  
Péter János Szabó

Duplex stainless steels are a famous group of the stainless steels. Duplex stainless steels consist of mainly austenitic and ferritic phases, which is resulted by high content of different alloying elements and low content of carbon. These alloying elements can effect a number of precipitations at high temperatures. The most important phase of these precipitation is the σ-phase, what cause rigidity and reduced resistance aganist the corrosion. Several orientation relationships have been determined between the austenitic, ferritic and σ-phase in duplex stainless steels. In this paper we tried to verify them by EBSD (electron backscatter diffraction).


Sign in / Sign up

Export Citation Format

Share Document