Elastic limit for surface step dislocation nucleation in face-centered cubic metals: Temperature and step height dependence

2010 ◽  
Vol 58 (12) ◽  
pp. 4182-4190 ◽  
Author(s):  
S. Brochard ◽  
P. Hirel ◽  
L. Pizzagalli ◽  
J. Godet
1998 ◽  
Vol 539 ◽  
Author(s):  
J. Belak ◽  
R. Minich

AbstractThe dynamic fracture (spallation) of ductile metals is known to initiate through the nucleation and growth of microscopic voids. Here, we apply atomistic molecular dynamics modeling to the early growth of nanoscale (2nm radius) voids in face centered cubic metals using embedded atom potential models. The voids grow through anisotropic dislocation nucleation and emission into a cuboidal shape in agreement with experiment. The mechanism of this nucleation process is presented. The resulting viscous growth exponent at late times is about three times larger than expected from experiment for microscale voids, suggesting either a length scale dependence or a inadequacy of the molecular dynamics model such as the perfect crystal surrounding the void.


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


2014 ◽  
Vol 8 (2) ◽  
Author(s):  
Ehsan Etemadi ◽  
Jamal Zamani ◽  
Alessandro Francesconi ◽  
Mohammad V. Mousavi ◽  
Cinzia Giacomuzzo

2013 ◽  
Vol 58 (1) ◽  
pp. 145-150 ◽  
Author(s):  
H. Paul ◽  
P. Uliasz ◽  
M. Miszczyk ◽  
W. Skuza ◽  
T. Knych

The crystal lattice rotations induced by shear bands formation have been examined in order to investigate the influence of grain boundaries on slip propagation and the resulting texture evolution. The issue was analysed on Al-0.23wt.%Zr alloy as a representative of face centered cubic metals with medium-to-high stacking fault energy. After solidification, the microstructure of the alloy was composed of flat, twin-oriented, large grains. The samples were cut-off from the as-cast ingot in such a way that the twinning planes were situated almost parallel to the compression plane. The samples were then deformed at 77K in channel-die up to strains of 0.69. To correlate the substructure with the slip patterns, the deformed specimens were examined by SEM equipped with a field emission gun and electron backscattered diffraction facilities. Microtexture measurements showed that strictly defined crystal lattice re-orientations occurred in the sample volumes situated within the area of the broad macroscopic shear bands (MSB), although the grains initially had quite different crystallographic orientations. Independently of the grain orientation, their crystal lattice rotated in such a way that one of the f111g slip planes became nearly parallel to the plane of maximum shear. This facilitates the slip propagation across the grain boundaries along the shear direction without any visible variation in the slip plane. A natural consequence of this rotation is the formation of specific MSB microtextures which facilitates slip propagation across grain boundaries.


2004 ◽  
Vol 96 (8) ◽  
pp. 4288-4292 ◽  
Author(s):  
C. Borchers ◽  
F. Gärtner ◽  
T. Stoltenhoff ◽  
H. Kreye

Sign in / Sign up

Export Citation Format

Share Document