scholarly journals Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets

2016 ◽  
Vol 115 ◽  
pp. 269-277 ◽  
Author(s):  
T.T. Sasaki ◽  
T. Ohkubo ◽  
K. Hono
2017 ◽  
Vol 62 (2) ◽  
pp. 1263-1266 ◽  
Author(s):  
M.-W. Lee ◽  
K.-H. Bae ◽  
S.-R. Lee ◽  
H.-J. Kim ◽  
T.-S. Jang

AbstractWe investigated the microstructural and magnetic property changes of DyCo, Cu + DyCo, and Al + DyCo diffusion-treated NdFeB sintered magnets. The coercivity of all diffusion treated magnet was increased at 880ºC of 1stpost annealing(PA), by 6.1 kOe in Cu and 7.0 kOe in Al mixed DyCo coated magnets, whereas this increment was found to be relatively low (3.9 kOe) in the magnet coated with DyCo only. The diffusivity and diffusion depth of Dy were increased in those magnets which were treated with Cu or Al mixed DyCo, mainly due to comparatively easy diffusion path provided by Cu and Al because of their solubility with Ndrich grain boundary phase. The formation of Cu/Al-rich grain boundary phase might have enhanced the diffusivity of Dy-atoms. Moreover, relatively a large number of Dy atoms reached into the magnet and mostly segregated at the interface of Nd2Fe14B and grain boundary phases covering Nd2Fe14B grains so that the core-shell type structures were developed. The formation of highly anisotropic (Nd, Dy)2Fe14B phase layer, which acted as the shell in the core-shell type structure so as to prevent the reverse domain movement, was the cause of enhancing the coercivity of diffusion treated NdFeB magnets. Segregation of cobalt in Nd-rich TJP followed by the formation of Co-rich phase was beneficial for the coercivity enhancement, resulting in the stabilization of the metastable c-Nd2O3phase.


2021 ◽  
Vol 135 ◽  
pp. 107232
Author(s):  
M. Grigoras ◽  
M. Lostun ◽  
G. Stoian ◽  
N. Lupu ◽  
F. Borza

Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


Author(s):  
Bradley L. Thiel ◽  
Chan Han R. P. ◽  
Kurosky L. C. Hutter ◽  
I. A. Aksay ◽  
Mehmet Sarikaya

The identification of extraneous phases is important in understanding of high Tc superconducting oxides. The spectroscopic techniques commonly used in determining the origin of superconductivity (such as RAMAN, XPS, AES, and EXAFS) are surface-sensitive. Hence a grain boundary phase several nanometers thick could produce irrelevant spectroscopic results and cause erroneous conclusions. The intergranular phases present a major technological consideration for practical applications. In this communication we report the identification of a Cu2O grain boundary phase which forms during the sintering of YBa2Cu3O7-x (1:2:3 compound).Samples are prepared using a mixture of Y2O3. CuO, and BaO2 powders dispersed in ethanol for complete mixing. The pellets pressed at 20,000 psi are heated to 950°C at a rate of 5°C per min, held for 1 hr, and cooled at 1°C per min to room temperature. The samples show a Tc of 91K with a transition width of 2K. In order to prevent damage, a low temperature stage is used in milling to prepare thin foils which are then observed, using a liquid nitrogen holder, in a Philips 430T at 300 kV.


2001 ◽  
Vol 45 (5) ◽  
pp. 517-524 ◽  
Author(s):  
M Vogel ◽  
O Kraft ◽  
G Dehm ◽  
E Arzt

2018 ◽  
Vol 10 (45) ◽  
pp. 39018-39024 ◽  
Author(s):  
Xueyan Song ◽  
Sergio A. Paredes Navia ◽  
Liang Liang ◽  
Cullen Boyle ◽  
Cesar-Octavio Romo-De-La-Cruz ◽  
...  

AIP Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 056028 ◽  
Author(s):  
Jun Fujisaki ◽  
Atsushi Furuya ◽  
Yuji Uehara ◽  
Koichi Shimizu ◽  
Tadashi Ataka ◽  
...  

2004 ◽  
Vol 19 (9) ◽  
pp. 2750-2758 ◽  
Author(s):  
Mark I. Jones ◽  
Kiyoshi Hirao ◽  
Hideki Hyuga ◽  
Yukihiko Yamauchi

The wear properties under low loads of β Si3N4 and α sialon materials sintered with different rare-earth oxide sintering additives have been studied under dry sliding conditions using block-on-ring wear tests. All the worn surfaces showed an absence of fracture and smooth surfaces with the presence of an oxygen-rich filmlike debris indicating tribochemically induced oxidation of the surfaces. Extensive grain boundary removal was observed on the worn surfaces thought to be due to adhesion between this silicate phase and the tribochemically oxidized surfaces. The resistance to such oxidation and the properties of the residual grain boundary phase are thought to be important parameters affecting the wear behavior under the present testing conditions. For both the β Si3N4 and α sialon materials, there was an increase in wear resistance with decreasing cationic radius of the rare earth, thought to be due to improved oxidation resistance, and this was more remarkable in the case of the sialon materials where the incorporation of the sintering additives into the Si3N4 structure results in a lower amount of residual boundary phase.


Sign in / Sign up

Export Citation Format

Share Document