Transitions in the strain hardening behaviour of tempered martensite

2021 ◽  
pp. 117397
Author(s):  
L.Y. Wang ◽  
Y.X. Wu ◽  
W.W. Sun ◽  
Y. Bréchet ◽  
L. Brassart ◽  
...  
2020 ◽  
Vol 199 ◽  
pp. 613-632 ◽  
Author(s):  
L.Y. Wang ◽  
Y.X. Wu ◽  
W.W. Sun ◽  
Y. Bréchet ◽  
L. Brassart ◽  
...  

2019 ◽  
Vol 85 (12) ◽  
pp. 43-50
Author(s):  
D. A. Movenko ◽  
L. V. Morozova ◽  
S. V. Shurtakov

The results of studying operational destruction of a high-loaded cardan shaft of the propeller engine made of steel 38KhN3MFA are presented to elucidate the cause of damage and develop a set of recommendations and measures aimed at elimination of adverse factors. Methods of scanning electron and optical microscopy, as well as X-ray spectral microanalysis are used to determine the mechanical properties, chemical composition, microstructure, and fracture pattern of cardan shaft fragments. It is shown that the mechanical properties and chemical composition of the material correspond to the requirements of the regulatory documentation, defects of metallurgical origin both in the shaft metal and in the fractures are absent. The microstructure of the studied shaft fragments is tempered martensite. Fractographic analysis revealed that the destruction of cardan shaft occurred by a static mechanism. The fracture surface is coated with corrosion products. The revealed cracks developed by the mechanism of corrosion cracking due to violation of the protective coating on the shaft. The results of the study showed that the destruction of the cardan shaft of a propeller engine made of steel 38Kh3MFA occurred due to formation and development of spiral cracks by the mechanism of stress corrosion cracking under loads below the yield point of steel. The reason for «neck» formation upon destruction of the shaft fragment is attributed to the yield point of steel attained during operation. Regular preventive inspections are recommended to assess the safety of the protective coating on the shaft surface to exclude formation and development of corrosion cracks.


Author(s):  
Andrey Kirichek ◽  
Dmitriy Solovyev

The article is devoted to the analysis of known structures of impact devices used in industry in order to obtain recommendations for their adaptation or when creating new structures for wave strain hardening by surface plastic deformation. The analysis was carried out on the used drive and on the main parameters of impact devices: impact energy, impact frequency, relative metal consumption and efficiency. The options are the best combinations of parameters for electric, pneumatic and hydraulic drives. Recommendations are given on the use of such devices, with appropriate adaptation, as pulse generators for wave strain hardening.


2020 ◽  
Vol 0 (9) ◽  
pp. 16-23
Author(s):  
A. L. Vorontsov ◽  
◽  
I. A. Nikiforov ◽  

The results of an experimental check of the obtained theoretical formulae allowing us to determine the most important parameters of extrusion cartridges with a counterpunch for different hollow radiuses and bottom-most part thicknesses are presented. Characteristics of used tools, geometric parameters of extrusion experiments, strength characteristics of deformed materials and lubricants are described in detail. Both strain-hardening material and strain-unhardening material were studied. Methodology of the theoretical calculations is demonstrated in detail. High accuracy of the obtained design formulae was confirmed.


Alloy Digest ◽  
2007 ◽  
Vol 56 (12) ◽  

Abstract Crucible 422 has a structure of tempered martensite to give the alloy high strength. It is useful in the aerospace industry for structurals with high strength/weight ratios. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1004. Producer or source: Crucible Service Centers.


Sign in / Sign up

Export Citation Format

Share Document