SELECTION OF THE DRIVE OF THE PULSE GENERATOR FOR WAVE DEFORMATION HARDENING

Author(s):  
Andrey Kirichek ◽  
Dmitriy Solovyev

The article is devoted to the analysis of known structures of impact devices used in industry in order to obtain recommendations for their adaptation or when creating new structures for wave strain hardening by surface plastic deformation. The analysis was carried out on the used drive and on the main parameters of impact devices: impact energy, impact frequency, relative metal consumption and efficiency. The options are the best combinations of parameters for electric, pneumatic and hydraulic drives. Recommendations are given on the use of such devices, with appropriate adaptation, as pulse generators for wave strain hardening.

2021 ◽  
pp. 16-22
Author(s):  
N.G. Dudkina ◽  
I.N. Zakharov ◽  
V. V. Barinov

The article provides an overview of the experimental research developments of the recent years of the scientific school of the Volgograd State Technical University in the field of combined surface hardening of metals by electromechanical processing (EMP) in combination with surface plastic deformation (SPD). For a long time, the authors have been developing a scientifically based approach to the selection of an effective combination of technological effects based on electromechanical processing using surface plastic deformation on the surface layer of medium- and high-carbon steels. The advantage of the combined technologies based on EMP is the possibility to control the quality, structure, physical-mechanical and operational properties within a wide range by changing the hardening modes.


Author(s):  
Андрей Киричек ◽  
Andrey Kirichek ◽  
Сергей Баринов ◽  
Sergey Barinov ◽  
Мария Рыжкова ◽  
...  

The article raises the problem of visualizing fleeting processes occurring as a result of wave strain hardening (WSH). The features of this method are unique capabilities for controlling the parameters of the shock pulse. This allows, in contrast to other dynamic methods of the surface plastic deformation, forming the desired microhardness distribution diagram in the surface layer at a depth of 6- 8 mm, while ensuring the required uniformity of hardening. The need to visualize this method is explained by the complexity of the analytical description of the ongoing wave processes in the shock system and the loading medium. Developing a visualization technique based on a model of the process of wave strain hardening consists of several stages. The stages include setting the initial and boundary conditions of the simulated elements, their physical-mechanical properties, loading conditions, the type of the mesh, the process conditions. The created model allows you to visually track the shock pulse movement after the striker hits the statically pressed waveguide against the loading medium, and at the same time to see the generation of the reflected deformation wave (the tail of the shock pulse) and its effect on the shock system elements and the loading medium. The results will make it possible to develop shock systems with the highest efficiency.


Author(s):  
V. R. Edigarov

The technology of combined electromechanical treatment with profile rolling is presented, which is a combination of electromechanical treatment and surface plastic deformation, which allows to create on the surface directed regular microrelief. The proposed technology is tested during processing of parts of multipurpose tracked and wheeled machines operating under difficult loading conditions, signalternating dynamic loads, often with limited lubricant or presence of abrasive in its composition. Reasonable selection of relief (pattern) of treated surface makes it possible to maximize retention of lubricating material in zone of tribocontact, as well as to increase wear resistance of parts and to create residual compression stresses in surface layer. The mechanical properties of the surface layer of the sample with a strengthened geometric pattern by changing the microhardness of the smoothed surface and oil pockets (channels) obtained by surface plastic deformation were examined. Electromechanical treatment by rolling the profile makes it possible to create on the surface a strengthened surface layer with naturally varying parameters with the specified regular micro-relief including oil pockets (channels) and reinforced tracks, at the same time considerable increase of wear resistance of triboscreating is provided.


Author(s):  
Семен Зайдес ◽  
Semen Zaides

Technological potentialities at finish-strengthening processing of low-rigid parts of shaft- and axle types with local ways of machining impact are rather limited. In the paper there are considered new ways for strengthening allowing obtaining qualitative surface strengthening in machine parts at high productivity of an engineering procedure.


2020 ◽  
pp. 79-82
Author(s):  
D.YU. Belan ◽  
G.B. Toder ◽  
K.V. Averkov ◽  
YU.V. Titov

A tool was developed for smoothing the plates of an electric motor collector. An analytical dependence of the roughness parameter of the machined surface on the force applied to the tool is obtained. Keywords traction electric motor, collector, diamond burnishing tool, surface-plastic deformation, repair, roughness. [email protected]


2015 ◽  
Vol 772 ◽  
pp. 279-283 ◽  
Author(s):  
T. Muthuramalingam ◽  
B. Mohan ◽  
D. Saravanakumar

The performance improvement in Electrical Discharge Machining process is a tedious one in materials and manufacturing processes especially in making of complex die and moulds. Due to non linear nature of this process, conventional pulse generators such as RC pulse generator and transistor pulse train generator cannot produce uniform energy distribution. Since RC pulse generator can produce smaller crater volume, it can make better surface finish than transistor pulse train generator crater size is influenced by the discharge current produced during the machining process. Due to its stochastic behavior, the discharge current is varied for every spark. The modified iso current pulse generator can produce uniform energy distribution with smaller crater size. In this study, EDM drilling experiments have been conducted on AISI 304 stainless steel with the RC pulse generator, Transistor pulse generator and iso energy pulse generator in electrical erosion process. The effects of these pulse generators on surface characterization have been evaluated and analyzed. From the evaluation results, it has been detected that the iso energy pulse generator has produced better surface structure than conventional pulse generators.


2014 ◽  
Vol 777 ◽  
pp. 213-218 ◽  
Author(s):  
Chandrahas Rathod ◽  
David Wexler ◽  
Vladimir Luzin ◽  
Paul Boyd ◽  
Manicka Dhanasekar

Insulated rail joints (IRJs) are a primary component of the rail track safety and signalling systems. Rails are supported by two fishplates which are fastened by bolts and nuts and, with the support of sleepers and track ballast, form an integrated assembly. IRJ failure can result from progressive defects, the propagation of which is influenced by residual stresses in the rail. Residual stresses change significantly during service due to the complex deformation and damage effects associated with wheel rolling, sliding and impact. IRJ failures can occur when metal flows over the insulated rail gap (typically 6-8 mm width), breaks the electrically isolated section of track and results in malfunction of the track signalling system. In this investigation, residual stress measurements were obtained from rail-ends which had undergone controlled amounts of surface plastic deformation using a full scale wheel-on-track simulation test rig. Results were compared with those obtained from similar investigations performed on rail ends associated with ex-service IRJs. Residual stresses were measured by neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements with constant gauge volume 3x3x3 mm3 were carried in the central vertical plane on 5mm thick sliced rail samples cut by an electric discharge machine (EDM). Stress evolution at the rail ends was found to exhibit characteristics similar to those of the ex-service rails, with a compressive zone of 5mm deep that is counterbalanced by a tension zone beneath, extending to a depth of around 15mm. However, in contrast to the ex-service rails, the type of stress distribution in the test-rig deformed samples was apparently different due to the localization of load under the particular test conditions. In the latter, in contrast with clear stress evolution, there was no obvious evolution of d0. Since d0 reflects rather long-term accumulation of crystal lattice damage and microstructural changes due to service load, the loading history of the test rig samples has not reached the same level as the ex-service rails. It is concluded that the wheel-on-rail simulation rig provides the potential capability for testing the wheel-rail rolling contact conditions in rails, rail ends and insulated rail joints.


Sign in / Sign up

Export Citation Format

Share Document