Atomistic Modeling of Interface Strengthening in Al-Si Eutectic Alloys

2021 ◽  
pp. 117586
Author(s):  
Wenqian Wu ◽  
Mingyu Gong ◽  
Bingqiang Wei ◽  
Amit Misra ◽  
Jian Wang
Author(s):  
E. F. Koch ◽  
E. L. Hall ◽  
S. W. Yang

The plane-front solidified eutectic alloys consisting of aligned tantalum monocarbide fibers in a nickel alloy matrix are currently under consideration for future aircraft and gas turbine blades. The MC fibers provide exceptional strength at high temperatures. In these alloys, the Ni matrix is strengthened by the precipitation of the coherent γ' phase (ordered L12 structure, nominally Ni3Al). The mechanical strength of these materials can be sensitively affected by overall alloy composition, and these strength variations can be due to several factors, including changes in solid solution strength of the γ matrix, changes in they γ' size or morphology, changes in the γ-γ' lattice mismatch or interfacial energy, or changes in the MC morphology, volume fraction, thermal stability, and stoichiometry. In order to differentiate between these various mechanisms, it is necessary to determine the partitioning of elemental additions between the γ,γ', and MC phases. This paper describes the results of such a study using energy dispersive X-ray spectroscopy in the analytical electron microscope.


2021 ◽  
Vol 194 ◽  
pp. 113645
Author(s):  
Evan B. Baker ◽  
Sangho Jeon ◽  
Olga Shuleshova ◽  
Ivan Kaban ◽  
Yeqing Wang ◽  
...  

Author(s):  
Jingming Shi ◽  
Emiliano Fonda ◽  
Silvana Botti ◽  
Miguel A. L. Marques ◽  
Toru Shinmei ◽  
...  

Metallization and dissociation are key transformations in diatomic molecules at high densities particularly significant for modeling giant planets. Using X-ray absorption spectroscopy and atomistic modeling, we demonstrate that in halogens,...


Sign in / Sign up

Export Citation Format

Share Document