Niche partitioning and species coexistence in a Neotropical felid assemblage

2010 ◽  
Vol 36 (4) ◽  
pp. 403-412 ◽  
Author(s):  
Mario S. Di Bitetti ◽  
Carlos D. De Angelo ◽  
Yamil E. Di Blanco ◽  
Agustín Paviolo
2020 ◽  
Author(s):  
Maxime Dubart ◽  
Patrice David ◽  
Frida Ben-Ami ◽  
Christoph R. Haag ◽  
V. Ilmari Pajunen ◽  
...  

AbstractNiche partitioning is the most studied factor structuring communities of competing species. In fragmented landscapes, however, a paradox can exist: different taxa may competitively dominate different types of habitat patches, resulting in a form of spatial niche partitioning, yet differences in long-term distributions among species can appear surprisingly small. This paradox is illustrated by an emblematic metacommunity - that of Daphnia spp. in rockpools on the Finnish Baltic coast, where three species compete with each other, have distinct ecological preferences, yet largely overlap in long-term distributions. Here we examine how metacommunity models that explicitly estimate species-specific demographic parameters can solve the apparent paradox. Our research confirms previous studies that local extinction rates are influenced by environmental variables in a strong and species-specific way and are considerably increased by interspecific competition. Yet, our simulations show that this situation exists alongside interspecific differences in realized niches that are, overall, small, and identified three main explanations for this compatibility. Our results illustrate how state-space modelling can clarify complex metacommunity dynamics and explain why local competition and niche differentiation do not always scale up to the landscape level.


2021 ◽  
Author(s):  
Damie Pak ◽  
Varun Swamy ◽  
Patricia Alvarez-Loayza ◽  
Fernando Cornejo ◽  
Simon A. Queenborough ◽  
...  

Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, including seasonal patterns of fruit production. Here we study whether this phenological diversity is non-random, what are the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analyses to test for phenological synchrony versus compensatory dynamics (i.e. anti-synchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long-term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole-community phenology at a wide range of time scales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species likely to share traits (confamilials) and seed dispersal mechanisms. Wind-dispersed species exhibited significant synchrony at ~6 mo scales, suggesting these species share phenological niches to match seasonality of wind. Our results indicate that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology partly results from temporal niche partitioning. The scale-specificity and time-localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.


2019 ◽  
Vol 40 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Irelis Bignotte-Giró ◽  
Ansel Fong G. ◽  
Germán M. López-Iborra

Abstract Acoustic segregation is a way to reduce competition and allows for species coexistence within anuran communities. Thus, separation in at least one acoustic niche dimension is expected, which also contributes to achieving effective communication among frogs. Here we studied an assemblage of five terrestrial egg-laying anuran species, all in the genus Eleutherodactylus, in a montane rainforest in eastern Cuba. Our aim was to determine if partitioning exists between these species in any dimension (time, signal frequency or space) of the acoustic niche. The studied assemblage had the following characteristics: (1) there was one diurnal species, two species with calling activity throughout the day and two species that call at night; (2) only two species overlapped in call frequencies and most had different calls, both in terms of dominant frequencies and in temporal characteristics; and (3) males of the species that overlapped in vocalizing time or signal frequency used different calling microhabitats or heights. This study provides evidence for the acoustic niche hypothesis in anurans, showing low probabilities of interference in sound communication among these frogs. The five species were separated in at least one of the three acoustic dimensions (calling time, frequency and site) as it occurs in mainland communities with more sympatric species of several genera. Conversely, species in single-genus communities studied in Puerto Rico overlapped completely in calling times. This seems to be due to the higher number of sympatric species at our site.


2018 ◽  
Author(s):  
Ryosuke Iritani ◽  
Suzuki Noriyuki

AbstractNegative interspecific mating interactions, known as reproductive interference, can hamper species coexistence in a local patch and promote niche partitioning or geographical segregation of closely related species. Conspecific sperm precedence (CSP), which occurs when females that have mated with both conspecific and heterospecific males preferentially use conspecific sperm for fertilization, might contribute to species coexistence by mitigating the costs of interspecific mating and hybridization. We examined whether two closely related species exhibiting CSP can coexist in a local environment in the presence of reproductive interference. First, using a behaviourally explicit mathematical model, we demonstrated that two species characterized by negative mating interactions are unlikely to coexist because the costs of reproductive interference, such as loss of mating opportunity with conspecific partners, are inevitably incurred when individuals of both species are present. Second, we experimentally demonstrated differences in mating activity and preference in twoHarmonialadybird species known to exhibit CSP. According to the developed mathematical model of reproductive interference, these behavioural differences should lead to local extinction ofH. yedoensisbecause of reproductive interference byH. axyridis. This prediction is consistent with field observations thatH. axyridisuses various food sources and habitats whereasH. yedoensisis confined to a less preferred prey item and a pine tree habitat. Finally, by a comparative approach, we showed that niche partitioning or parapatric distribution, but not sympatric coexistence in the same habitat, is maintained between species with CSP belonging to a wide range of taxa, including vertebrates and invertebrates living in aquatic or terrestrial environments. Taken together, these results lead us to conclude that reproductive interference generally destabilizes local coexistence even in closely related species that exhibit CSP.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Suzuki Noriyuki ◽  
Naoya Osawa

The range and quality of prey species differ greatly among closely related species of predators. However, the factors responsible for this diversified niche utilization are unclear. This is because the predation and resource competition do not always prevent species coexistence. In this paper, we present evidence in support of reproductive interference as a driver of niche partitioning, focusing on aphidophagous insect. Firstly, we present closely related generalist and specialist species pairs in aphidophagous lacewings to compare the reproductive interference hypothesis with two other hypotheses that have been proposed to explain niche partitioning in lacewings and sympatric speciation through host race formation and sexual selection. Secondly, we present a case study that shows how reproductive interference can drive niche partitioning in sibling ladybird species. Thirdly, we show that many ladybird genera include species inhabiting the same region but having different food and habitat preferences, raising the possibility that reproductive interference might occur in these groups. Finally, we show that intraguild predation cannot always explain the niche partitioning in aphidophagous insects including hoverflies and parasitoids. On the basis of the evidence presented, we urge that future studies investigating predator communities should take account of the role of reproductive interference.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10974
Author(s):  
Jaume Izquierdo-Palma ◽  
Maria del Coro Arizmendi ◽  
Carlos Lara ◽  
Juan Francisco Ornelas

Background Plant-pollinator mutualistic networks show non-random structural properties that promote species coexistence. However, these networks show high variability in the interacting species and their connections. Mismatch between plant and pollinator attributes can prevent interactions, while trait matching can enable exclusive access, promoting pollinators’ niche partitioning and, ultimately, modularity. Thus, plants belonging to specialized modules should integrate their floral traits to optimize the pollination function. Herein, we aimed to analyze the biological processes involved in the structuring of plant-hummingbird networks by linking network morphological constraints, specialization, modularity and phenotypic floral integration. Methods We investigated the understory plant-hummingbird network of two adjacent habitats in the Lacandona rainforest of Mexico, one characterized by lowland rainforest and the other by savanna-like vegetation. We performed monthly censuses to record plant-hummingbird interactions for 2 years (2018–2020). We also took hummingbird bill measurements and floral and nectar measurements. We summarized the interactions in a bipartite matrix and estimated three network descriptors: connectance, complementary specialization (H2’), and nestedness. We also analyzed the modularity and average phenotypic floral integration index of each module. Results Both habitats showed strong differences in the plant assemblage and network dynamics but were interconnected by the same four hummingbird species, two Hermits and two Emeralds, forming a single network of interaction. The whole network showed low levels of connectance (0.35) and high specialization (H2’ = 0.87). Flower morphologies ranged from generalized to specialized, but trait matching was an important network structurer. Modularity was associated with morphological specialization. The Hermits Phaethornis longirostris and P. striigularis each formed a module by themselves, and a third module was formed by the less-specialized Emeralds: Chlorestes candida and Amazilia tzacatl. The floral integration values were higher in specialized modules but not significantly higher than that formed by generalist species. Conclusions Our findings suggest that biological processes derived from both trait matching and “forbidden” links, or nonmatched morphological attributes, might be important network drivers in tropical plant-hummingbird systems while morphological specialization plays a minor role in the phenotypic floral integration. The broad variety of corolla and bill shapes promoted niche partitioning, resulting in the modular organization of the assemblage according to morphological specialization. However, more research adding larger datasets of both the number of modules and pollination networks for a wider region is needed to conclude whether phenotypic floral integration increases with morphological specialization in plant-hummingbird systems.


2019 ◽  
Vol 3 ◽  
pp. 1-10 ◽  
Author(s):  
Patrick T. Rohner ◽  
Jean-Paul Haenni ◽  
Athene Giesen ◽  
Juan Pablo Busso ◽  
Martin A. Schäfer ◽  
...  

Understanding why and how multiple species manage to coexist represents a primary goal of ecological and evolutionary research. This is of particular relevance for communities that depend on resource rich ephemeral habitats that are prone to high intra- and interspecific competition. Black scavenger flies (Diptera: Sepsidae) are common and abundant acalyptrate flies associated with livestock dung decomposition in human-influenced agricultural grasslands worldwide. Several widespread sepsid species with apparently very similar ecological niches coexist in Europe, but despite their ecological role and their use in evolutionary ecological research, our understanding of their ecological niches and spatio-temporal distribution is still rudimentary. To gain a better understanding of their ecology, we here investigate niche partitioning at two temporal scales. First, we monitored the seasonal occurrence, often related to thermal preference, over multiple years and sites in Switzerland that differ in altitude. Secondly, we also investigate fine-scale temporal succession on dairy cow pastures. In accordance with their altitudinal and latitudinal distribution in Europe, some species were common over the entire season with a peak in summer, hence classified as warm-loving, whereas others were primarily present in spring or autumn. Phenological differences thus likely contribute to species coexistence throughout the season. However, the community also showed pronounced species turnover related to cow pat age. Some species colonize particularly fresh dung and are gradually replaced by others. Furthermore, the correlation between co-occurrence and phylogenetic distance of species revealed significant under-dispersion, indicating that more closely related species are frequently recovered at the same location. As a whole, our data suggests temporal niche differentiation of closely related species that likely facilitates the rather high species diversity on Swiss cattle pastures. The underlying mechanisms allowing close relatives to co-occur however require further scrutiny.


2017 ◽  
Vol 4 (3) ◽  
pp. 170060 ◽  
Author(s):  
Carl S. Cloyed ◽  
Perri K. Eason

Intra-population niche differences in generalist foragers have captured the interest of ecologists, because such individuality can have important ecological and evolutionary implications. Few researchers have investigated how these differences affect the relationships among ecologically similar, sympatric species. Using stable isotopes, stomach contents, morphology and habitat preference, we examined niche partitioning within a group of five anurans and determined whether variation within species could facilitate resource partitioning. Species partitioned their niches by trophic level and by foraging habitat. However, there was considerable intraspecific variation in trophic level, with larger individuals generally feeding at higher trophic levels. For species at intermediate trophic levels, smaller individuals overlapped in trophic level with individuals of smaller species and larger individuals overlapped with the smallest individuals from larger species. Species varied in carbon isotopes; species with enriched carbon isotope ratios foraged farther from ponds, whereas species with depleted carbon isotope values foraged closer to ponds. Our study shows that these species partition their niches by feeding at different trophic levels and foraging at different distances from ponds. The intraspecific variation in trophic level decreased the number of individuals from each species that overlapped in trophic level with individuals from other species, which can facilitate species coexistence.


Biologia ◽  
2013 ◽  
Vol 68 (1) ◽  
Author(s):  
Michal Andreas ◽  
Antonín Reiter ◽  
Eva Cepáková ◽  
Marcel Uhrin

AbstractWe investigated a community of syntopically occurring horseshoe bats (Rhinolophus hipposideros, R. euryale, R. ferrumequinum) in southern Slovakia. The faecal pellets of these bat species were collected in the field and later analysed under a dissecting microscope. The three species studied are known to be very similar as far as their ecology, echolocation and preferred habitats are concerned, but they diverge significantly in their body sizes. In this study, all three species fed predominantly on moths [59–80 percentage frequency (%f); 87–95 percentage volume (%vol)], but their diet compositions differed in the size of individuals consumed. The smallest bat species (R. hipposideros) fed only on the smallest moths (%f = 59; %vol = 87), the medium-sized species (R. euryale) mainly on medium-sized moths (%f = 60; %vol = 74) and the largest one (R. ferrumequinum) especially on the largest moths (%f = 54; %vol = 89). Despite similar preferred habitat and the main prey category, the rates of trophic niche overlap were surprisingly low. The trophic niche percentage overlap was 7–31% (computed from %f data) and 1–20% (computed from %vol data), respectively and suggests an extraordinary importance of mere divergences of bats in their body sizes for trophic niche partitioning and stable species coexistence.


2015 ◽  
Vol 112 (26) ◽  
pp. 8019-8024 ◽  
Author(s):  
Tyler R. Kartzinel ◽  
Patricia A. Chen ◽  
Tyler C. Coverdale ◽  
David L. Erickson ◽  
W. John Kress ◽  
...  

Niche partitioning facilitates species coexistence in a world of limited resources, thereby enriching biodiversity. For decades, biologists have sought to understand how diverse assemblages of large mammalian herbivores (LMH) partition food resources. Several complementary mechanisms have been identified, including differential consumption of grasses versus nongrasses and spatiotemporal stratification in use of different parts of the same plant. However, the extent to which LMH partition food-plant species is largely unknown because comprehensive species-level identification is prohibitively difficult with traditional methods. We used DNA metabarcoding to quantify diet breadth, composition, and overlap for seven abundant LMH species (six wild, one domestic) in semiarid African savanna. These species ranged from almost-exclusive grazers to almost-exclusive browsers: Grass consumption inferred from mean sequence relative read abundance (RRA) ranged from >99% (plains zebra) to <1% (dik-dik). Grass RRA was highly correlated with isotopic estimates of % grass consumption, indicating that RRA conveys reliable quantitative information about consumption. Dietary overlap was greatest between species that were similar in body size and proportional grass consumption. Nonetheless, diet composition differed between all species—even pairs of grazers matched in size, digestive physiology, and location—and dietary similarity was sometimes greater across grazing and browsing guilds than within them. Such taxonomically fine-grained diet partitioning suggests that coarse trophic categorizations may generate misleading conclusions about competition and coexistence in LMH assemblages, and that LMH diversity may be more tightly linked to plant diversity than is currently recognized.


Sign in / Sign up

Export Citation Format

Share Document