Microsphere Sensors for Charactering Stress Fields Within Three-Dimensional Extracellular Matrix

Author(s):  
Xin Ding ◽  
Moxiao Li ◽  
Bo Cheng ◽  
Zhao Wei ◽  
Yuqing Dong ◽  
...  
2021 ◽  
Author(s):  
Xin Ding ◽  
Moxiao Li ◽  
Bo Cheng ◽  
Zhao Wei ◽  
Yuqing Dong ◽  
...  

2019 ◽  
Vol 5 (11) ◽  
pp. 5669-5680 ◽  
Author(s):  
Naoko Nakamura ◽  
Tsuyoshi Kimura ◽  
Kwangwoo Nam ◽  
Toshiya Fujisato ◽  
Hiroo Iwata ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1629
Author(s):  
Colin H. Quinn ◽  
Andee M. Beierle ◽  
Elizabeth A. Beierle

In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.


2021 ◽  
Vol 11 (7) ◽  
pp. 3262
Author(s):  
Neill J. Turner

The present Special Issue comprises a collection of articles addressing the many ways in which extracellular matrix (ECM), or its components parts, can be used in regenerative medicine applications. ECM is a dynamic structure, composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and glycosaminoglycans, synthesized by the resident cells. Consequently, ECM can be considered as nature’s ideal biologic scaffold material. The articles in this Special Issue cover a range of topics from the use of ECM components to manufacture scaffold materials, understanding how changes in ECM composition can lead to the development of disease, and how decellularization techniques can be used to develop tissue-derived ECM scaffolds for whole organ regeneration and wound repair. This editorial briefly summarizes the most interesting aspects of these articles.


2020 ◽  
Vol 29 (1) ◽  
pp. 1-8
Author(s):  
Ahmed Allali ◽  
Sadia Belbachir ◽  
Ahmed Alami ◽  
Belhadj Boucham ◽  
Abdelkader Lousdad

AbstractThe objective of this work lies in the three-dimensional study of the thermo mechanical behavior of a blade of a centrifugal compressor. Numerical modeling is performed on the computational code "ABAQUS" based on the finite element method. The aim is to study the impact of the change of types of blades, which are defined as a function of wheel output angle β2, on the stress fields and displacements coupled with the variation of the temperature.This coupling defines in a realistic way the thermo mechanical behavior of the blade where one can note the important concentrations of stresses and displacements in the different zones of its complex form as well as the effects at the edges. It will then be possible to prevent damage and cracks in the blades of the centrifugal compressor leading to its failure which can be caused by the thermal or mechanical fatigue of the material with which the wheel is manufactured.


Sign in / Sign up

Export Citation Format

Share Document