cell accumulation
Recently Published Documents


TOTAL DOCUMENTS

550
(FIVE YEARS 119)

H-INDEX

70
(FIVE YEARS 7)

2022 ◽  
pp. 41-46
Author(s):  
N. B. Zakharova ◽  
A. N. Ponukalin ◽  
M. L. Chekhonatskaya ◽  
A. Y. Korolev ◽  
Y. M. Komyagina

The development of malignant tissue transformation is accompanied by the accumulation of immune system cells or tumor microenvironment cells (MCO) in it. Three variants of immune cell accumulation were identified: the ‘immune desert’ phenotype, ‘hot’ tumors, with a cytolytic T-cell response. The review presents immunotherapeutic strategies of exposure in order to enhance the ability of McO to initiate immune mechanisms capable of blocking the development of tumor tissue. The analysis of the presented data on the importance of immuno-oncological biomarkers as laboratory indicators of the therapeutic effectiveness of drug therapy aimed at restoring key immune defense pathways in oncourological diseases was carried out. The results of the study of the effectiveness of immuno-oncological biomarkers for assessing the state of antitumor immunity in malignant neoplasms of the bladder, kidneys, prostate gland are summarized.


2022 ◽  
Vol 20 (8) ◽  
pp. 3051
Author(s):  
A. G. Sorokina ◽  
Ya. A. Orlova ◽  
O. A. Grigorieva ◽  
E. S. Novoseletskaya ◽  
N. A. Basalova ◽  
...  

With aging, tissue homeostasis and their effective recovery after damage is violated. It has been shown that this may be due to the excessive accumulation of senescent (SC) cells in various tissues, which leads to the activation of chronic sterile inflammation, tissue dysfunction and, as a result, to the development of age-related diseases. To assess the contribution of SC cells to human body aging and pathogenesis of such diseases, relevant biomarkers are studied. For successful translation into clinical practice of approaches aimed at regulating the SC cell content in various tissues, it is necessary to study the relationship between the established clinical biomarkers of aging and age-related diseases, systemic aging parameters, and SC biomarkers at the tissue and cellular levels.Aim. To develop and describe action algorithms for creating a biobank of samples obtained from patients aged >65 years in order to study biomarkers of SC cell accumulation.Material and methods. To collect samples, an interaction system was built between several research, clinical and infrastructure departments of a multidisciplinary medical center. At the stage of preanalytical training, regulatory legal acts were developed, including informed consent for patients, as well as protocols for each stage of the study.Results. A roadmap was formed with action algorithms for all participants in the study, as well as with a convenient and accessible system of annotations and storage of biological samples. To date, the collection includes biological samples of 7 different types (peripheral blood serum, formalin-fixed tissue samples and formalin fixed paraffin embedded tissue specimens, samples of different cells isolated from peripheral blood, skin and adipose tissue, samples of deoxyribonucleic and ribonucleic acids, cell secretome conditioned media) obtained from 82 patients. We accumulated relevant anamnestic, clinical and laboratory data, as well as the results of experimental studies to assess the SC cell biomarkers. Using the collection, the relationship between clinical, tissue and cellular biomarkers of SC cell accumulation was studied.Conclusion. The creation of a collection of biological samples at the molecular, cellular, tissue and organism levels from one patient provides great opportunities for research in the field of personalized medicine and the study of age-related disease pathogenesis.


2021 ◽  
Author(s):  
Shanzeh M Ahmed ◽  
Nina Fransen ◽  
Hanane Touil ◽  
Iliana Michailidou ◽  
Inge Huitinga ◽  
...  

Subpial cortical demyelination is an important component of multiple sclerosis (MS) pathology contributing to disease progression, yet mechanism(s) underlying its development remain unclear. Compartmentalized inflammation involving the meninges may drive this type of injury. Given recent findings identifying substantial white matter (WM) lesion activity in patients with progressive MS, elucidating whether and how WM lesional activity relates to meningeal inflammation and subpial cortical injury is of interest. Using post-mortem formalin-fixed paraffin-embedded tissue blocks (range, 5-72 blocks; median, 30 blocks) for each of 27 progressive MS patients, we assessed the relationship between meningeal inflammation, the extent of subpial cortical demyelination, and the state of subcortical WM lesional activity. Meningeal accumulations of T cells and B cells, but not myeloid cells, were spatially adjacent to subpial cortical lesions and greater immune-cell accumulation was associated with higher subpial lesion numbers. Patients with a higher extent of meningeal inflammation harboured a greater proportion of active and mixed (active-inactive) WM lesions, and an overall lower proportion of inactive and remyelinated WM lesions. Our findings support the involvement of meningeal lymphocytes in subpial cortical injury, and also point to a potential link between inflammatory subpial cortical demyelination and pathological mechanisms occurring in the subcortical white matter.


Healthcare ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1766
Author(s):  
Raj Kumar Arya ◽  
George D. Verros ◽  
Devyani Thapliyal

In this work, a comprehensive model for the viral progression in the pharynx has been developed. This one-dimension model considers both Fickian diffusion and convective flow coupled with chemical reactions, such as virus population growth, infected and uninfected cell accumulation as well as virus clearance. The effect of a sterilizing agent such as an alcoholic solution on the viral progression in the pharynx was taken into account and a parametric analysis for the effect of kinetic rate parameters on virus propagation was made. Moreover, different conditions caused by further medical treatment, such as a decrease in virus yield per infected cell, were examined. It is shown that the infection fails to establish by decreasing the virus yield per infected cell. It is believed that this work could be used to further investigate the medical treatment of viral progression in the pharynx.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Lv ◽  
Tingting Yao ◽  
Rongling He ◽  
Yijun He ◽  
Mengyu Li ◽  
...  

Acute lung injury (ALI) is a severe disease that presents serious damage and excessive inflammation in lungs with high mortality without effective pharmacological therapy. Fluorofenidone (AKFPD) is a novel pyridone agent that has anti-fibrosis, anti-inflammation, and other pharmacological activities, while the effect of fluorofenidone on ALI is unclarified. Here, we elucidated the protective effects and underlying mechanism of fluorofenidone on lipopolysaccharide (LPS)-induced ALI. In this study, fluorofenidone alleviated lung tissue structure injury and reduced mortality, decreased the pulmonary inflammatory cell accumulation and level of inflammatory cytokines IL-1β, IL-6, and TNF-α in the bronchoalveolar lavage fluid, and attenuated pulmonary apoptosis in LPS-induced ALI mice. Moreover, fluorofenidone could block LPS-activated phosphorylation of ERK, JNK, and P38 and further inhibited the phosphorylation of IκB and P65. These results suggested that fluorofenidone can significantly contrast LPS-induced ALI through suppressing the activation of the MAPK/NF-κB signaling pathway, which indicates that fluorofenidone could be considered as a novel therapeutic candidate for ALI.


2021 ◽  
Author(s):  
Takahiro Suzuki ◽  
Takeru Abe ◽  
Mika Ikegaya ◽  
Kaori Suzuki ◽  
Haruka Yabukami ◽  
...  

In vitro functional sperm production is important for understanding spermatogenesis and for the treatment of male infertility. Here, we describe similarities and differences between testis tissues in vivo and in vitro and clarify abnormalities in the early stage of in vitro spermatogenesis at single-cell resolution. While in vitro spermatogenesis progressed similarly to in vivo spermatogenesis until the early pachytene spermatocyte stage, a noticeable acute inflammatory response occurred in immune cells and non-immune testicular somatic cells immediately after cultivation. Inhibitor treatment revealed that NLRP3 inflammasome signaling is key to the inflammation. We observed damaged/dead germ cell accumulation in cultured testis, which may be due to dysfunctional phagocytosis by Sertoli cells. Our data revealed abnormal testicular milieu of in vitro cultured testes caused by tissue-wide sterile inflammation, in which the danger-associated molecular pattern-NLRP3 inflammasome axis may be a key element.


2021 ◽  
Vol 3 ◽  
Author(s):  
Mohammed Abdulhasan ◽  
Ximena Ruden ◽  
Yuan You ◽  
Sean M. Harris ◽  
Douglas M. Ruden ◽  
...  

Fluorescent ubiquitination-based cell cycle indicator (FUCCI) embryonic stem cells (ESCs), which fluoresce green during the S-G2-M phases, generate an S-shaped curve for the accumulation of cells during normal stemness (NS) culture with leukemia-inhibitory factor (LIF). Since it was hypothesized that a culture of ESCs was heterogeneous in the cell cycle, it was expected that increased S-G2-M-phases of the cell cycle would make an S-shaped curve parallel to the accumulation curve. Unexpectedly, it was observed that the fraction of FUCCI ESCs in green decreases over time to a nadir at ∼24 h after previous feeding and then rapidly enters S-G2-M-phases after medium change. G1 delay by infrequent medium change is a mild stress, as it does not affect growth significantly when frequency is increased to 12 h. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) were used as examples of members of the per- and polyfluoroalkyl substances (PFAS) and phthalate families of chemicals, respectively. Two adverse outcomes were used to compare dose- and time-dependent effects of PFOA and DEP. The first was cell accumulation assay by time-lapse confluence measurements, largely at Tfinal/T74 h. The second was by quantifying dominant toxicant stress shown by the suppression of mild stress that creates a green fed/unfed peak. In terms of speed, PFOA is 26 times faster than DEP for producing a time-dependent LOAEL dose at 100 uM (that is, 2 h for PFOA and 52 h for DEP). PFOA has 1000-fold more sensitive LOAEL doses than DEP for suppressing ESC accumulation (confluence) at day 3 and day 2. There were two means to compare the magnitude of the growth suppression of PFOA and DEP. For the suppression of the accumulation of cells measured by confluence at Tfinal/T74h, there was a 13-fold suppression at the highest dose of PFOA > the highest dose of DEP. For the suppression of entry into the cell cycle after the G1 phase by stress on day 1 and 2, there is 10-fold more suppression by PFOA than DEP. The data presented here suggest that FUCCI ESCs can assay the suppression of accumulated growth or predict the suppression of future growth by the suppression of fed/unfed green fluorescence peaks and that PFOA’s adverse effects are faster and larger and can occur at more sensitive lower doses than DEP.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2983
Author(s):  
Simona Sapino ◽  
Giulia Chindamo ◽  
Daniela Chirio ◽  
Maela Manzoli ◽  
Elena Peira ◽  
...  

The treatment of bone diseases (including osteoporosis, osteoarthritis, and bone cancer) often results in reduced efficiency and/or adverse reactions due to the fact that it is not specifically targeted to the site of action. The employment of a suitable carrier should increase drug location to the site of bone disease. The purpose of this study is to prepare and characterize lipid nanoparticles (NPs) coated with calcium phosphate (CaP-NPs). A coating method, to date used only to obtain liposomes covered with CaP, is herein partially-modified to prepare CaP-coated lipid NPs. An extensive physico-chemical characterization was achieved by employing several techniques (DLS, SEM and TEM, and both combined with EDS, XRD, and FTIR) that confirmed the feasibility of the developed coating method. Preliminary uptake studies on human osteosarcoma cells (U-2OS) were performed by entrapping, as a lipid probe, Sudan Red III in NPs. The obtained data provided evidence that CaP-NPs showed higher cell accumulation than uncoated NPs. This result may have important implications for the development of drug loaded CaP-NPs to be tested in vitro with a view of planning future treatment of bone diseases, and indicate that CaP-NPs are potential vehicles for selective drug delivery to bone tissue.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Je-Oh Lim ◽  
Se-Jin Lee ◽  
Woong-Il Kim ◽  
So-Won Pak ◽  
Jong-Choon Kim ◽  
...  

Silica dioxide nanoparticles (SiONPs) have been increasingly used in various industries; however, this has raised concerns regarding their potential toxicity. SiONPs are also a major component in the Asian sand dust that causes pulmonary diseases among the general public. Melatonin exerts some inhibitory effects against lung inflammation. In this study, we explored the therapeutic properties of melatonin against lung inflammation using an SiONPs-induced lung inflammation murine model and SiONPs-stimulated H292 cells, human airway epithelial cell line, by focusing on the involvement of thioredoxin-interacting protein (TXNIP) in the modulation of the MAPKs/AP-1 axis. We induced an inflammatory response by exposing mouse lungs and the H292 cells to SiONPs and confirmed the anti-inflammatory effect of melatonin. Melatonin inhibited the expression of various inflammatory mediators, including TNF-α, IL-6, and IL-1β, in SiONPs-exposed mice and SiONPs-stimulated H292 cells; this inhibition contributed to a decline in inflammatory cell accumulation in the lung tissues. Furthermore, melatonin treatment decreased the expression of MAPKs and AP-1 by downregulating TXNIP, eventually decreasing the production of SiONPs-induced inflammatory mediators. Overall, these data suggest that melatonin reduces SiONPs-induced lung inflammation by downregulating the TXNIP/MAPKs/AP-1 signalling pathway, thereby supporting the use of melatonin as an effective approach to control SiONPs-induced lung inflammation.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A347-A347
Author(s):  
Emily Higgs ◽  
Thomas Gajewski ◽  
Jonathan Trujillo

BackgroundThe hypoxia-inducible factor (HIF) system, consisting of the transcription factors HIF-1α and HIF-2α, mediates cellular adaptation to hypoxia, and can promote cancer progression, invasion, and metastasis. HIF pathway activation in the tumor microenvironment has been implicated in cancer immune evasion; however, a direct causal role for tumor cell-intrinsic HIF-1α and HIF-2α activation in mediating T cell exclusion and cancer cell resistance to immune checkpoint inhibitor therapy has not been demonstrated.MethodsWe performed gene expression analysis of melanoma tumors in the Cancer Genome Atlas (TCGA) data set to determine whether increased HIF-1α pathway activation correlated with reduced T cell-based inflammation. The magnitude of HIF-1α pathway activation across melanoma samples was determined by applying a quantitative scoring system on the expression of a melanocyte-specific hypoxia-induced, HIF-1α-target gene signature consisting of 81 genes. The Pearson correlation test was used to compare the HIF-1α activation score and our 160-gene T-cell-inflamed gene signature. To determine the impact of cancer cell-intrinsic HIF-1α or HIF-2α activation on the endogenous anti-tumor T cell response, we developed an inducible autochthonous mouse melanoma model driven by BRAFV600E expression and PTEN-deletion, with or without inducible expression of either a stabilized variant of HIF-1α or HIF-2α. These murine tumor models are being used to determine the impact of cancer cell-intrinsic HIF-1α or HIF-2α activation on tumor sensitivity to anti-PD-1/PD-L1 and anti-CTLA-4 treatment.ResultsGene expression analysis of human melanomas in the TCGA demonstrated a statistically significant inverse correlation between the HIF-1α activation score and T cell-inflammation score. Braf/PTEN murine melanomas with and without stabilized HIF-1α expression developed with comparable tumor onset and growth kinetics. Multiparameter immunofluorescence staining of melanoma tissue revealed a significant decrease in tumor-infiltrating T cells within Braf/PTEN melanoma tumors expressing stabilized HIF-1α compared to control Braf/PTEN melanomas.ConclusionsOur data demonstrate that tumor-cell intrinsic HIF-1α activation leads to diminished T cell accumulation within the tumor microenvironment, which has implications for cancer immunotherapy. The mechanism of this effect is being elucidated. These novel murine models will help elucidate the roles of cancer cell-intrinsic HIF-1α and HIF-2α activation in modulating the anti-tumor T cell response, providing mechanistic insight that will inform the evaluation of novel selective HIF inhibitors, which are showing promising anti-tumor activity in clinical trials in patients with advanced solid tumors.


Sign in / Sign up

Export Citation Format

Share Document