Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy

Author(s):  
Xueyu Jiang ◽  
Fanwei Zeng ◽  
Xuefeng Yang ◽  
Chao Jian ◽  
Lina Zhang ◽  
...  
2021 ◽  
Author(s):  
Xueyu Jiang ◽  
Fanwei Zeng ◽  
Xuefeng Yang ◽  
Chao Jian ◽  
Lina Zhang ◽  
...  

2021 ◽  
Author(s):  
Moataz Dowaidar

This review carefully reviewed recent polydopamine (PDA) research, including targeted therapy and cancer synergistic medications. Recent breakthroughs in photothermal treatment coupled with complex therapies such as gene therapy, radiation, and especially immunotherapy were highlighted. Due to their exceptional biocompatibility, degradability, low toxicity and high photothermal conversion efficiency, facile oxidative self-polymerization of dopamine can create PDA and serve as an excellent nanocarrier or photothermal cancer treatment agent. Due to its high adhesive capacity, PDA may be easily functionalized with a range of nanomaterials for synergistic cancer therapy, in addition to its exceptional photothermal effects. Although PDA-based multifunctional nanoplatforms have gained interest for synergistic cancer therapy, such as chemo-photothermal treatment and photodynamic-photothermal treatment, discovering novel uses for PDA remains tough. First, despite its easy and mild process of synthesis, large-scale synthesis with uniform size and thickness is challenging owing to the absence of consistent quality control standards. Second, due to the strong adhesive properties of PDA, multifunctional nanoplatforms are prone to aggregating in a solution. Third, to improve PDA's clinical application, its safety should be fully researched. Before being deployed in clinical settings, PDA-based multifunctional systems need additional research. A PDA-based multifunctional platform for better synergistic cancer treatment is a forward-looking strategy. In particular, PDA-based immunotherapy systems will remain a research center.Besides immunotherapy, in recent years, the integration of cancer diagnosis and treatment has gained a lot of publicity. Polyphenols have been proven to suppress tumor development and interact with metals such as Fe3+, Pt4+, Cu2+, etc (MPNs). MPNs are biocompatible, functional, pH-responsive and can escape endosomes. PDA has the potential to develop MPNs with contrasting magnetic resonance agents like gadolinium due to the enormous quantity of catechol groups on its surface, allowing magnetic resonance imaging. Polyphenols also have tumor-inhibiting effects, and PDA's photothermal activity can ablate tumors. Consequently, PDA-based MPNs might be a promising way to integrate diagnosis and treatment. Moreover, polydopamine can crosslink acrylamide and other polymers to form anticancer and antibacterial hydrogels. Increasing the stickiness of polydopamine hydrogels is now underway, paving the path for self-adhesive bioelectronics hydrogels. Bioelectron self-adhesion and other capabilities such as self-healing, transparency, and bacterio-toxicity may be supplied to polydopamine hydrogels by altering phenolquinone's redox process. A prospective future trend is using self-adhesive polydopamine hydrogels with current bioelectronic materials. We think that polydopamine hydrogels will eventually advance from skin patches to implantable integrated bioelectronics.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2680
Author(s):  
Elham Pishavar ◽  
Fatemeh Khosravi ◽  
Mahshid Naserifar ◽  
Erfan Rezvani Ghomi ◽  
Hongrong Luo ◽  
...  

Regenerative medicine seeks to assess how materials fundamentally affect cellular functions to improve retaining, restoring, and revitalizing damaged tissues and cancer therapy. As potential candidates in regenerative medicine, hydrogels have attracted much attention due to mimicking of native cell-extracellular matrix (ECM) in cell biology, tissue engineering, and drug screening over the past two decades. In addition, hydrogels with a high capacity for drug loading and sustained release profile are applicable in drug delivery systems. Recently, self-healing supramolecular hydrogels, as a novel class of biomaterials, are being used in preclinical trials with benefits such as biocompatibility, native tissue mimicry, and injectability via a reversible crosslink. Meanwhile, the localized therapeutics agent delivery is beneficial due to the ability to deliver more doses of therapeutic agents to the targeted site and the ability to overcome post-surgical complications, inflammation, and infections. These highly potential materials can help address the limitations of current drug delivery systems and the high clinical demand for customized drug release systems. To this aim, the current review presents the state-of-the-art progress of multifunctional and self-healable hydrogels for a broad range of applications in cancer therapy, tissue engineering, and regenerative medicine.


Cellulose ◽  
2021 ◽  
Author(s):  
Huiqiang Wang ◽  
Xin Yu ◽  
Xing Tang ◽  
Yong Sun ◽  
Xianhai Zeng ◽  
...  

2017 ◽  
Vol 3 (12) ◽  
pp. 3404-3413 ◽  
Author(s):  
Prabhu S. Yavvari ◽  
Sanjay Pal ◽  
Sandeep Kumar ◽  
Animesh Kar ◽  
Anand Kumar Awasthi ◽  
...  

2021 ◽  
Author(s):  
Jintong Liu ◽  
Jing Huang ◽  
Lei Zhang ◽  
Jianping Lei

We review the general principle of the design and functional modulation of nanoscaled MOF heterostructures, and biomedical applications in enhanced therapy.


2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


1982 ◽  
Vol 118 (4) ◽  
pp. 267-272 ◽  
Author(s):  
E. Bonifazi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document