Biosynthesis of collagen I, II, RUNX2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue

2014 ◽  
Vol 116 (8) ◽  
pp. 1407-1417 ◽  
Author(s):  
Giuseppe Musumeci ◽  
Ali Mobasheri ◽  
Francesca Maria Trovato ◽  
Marta Anna Szychlinska ◽  
Adriana Carol Eleonora Graziano ◽  
...  
2011 ◽  
Vol 43 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Cornelia Hildebrandt ◽  
Heiko Büth ◽  
Hagen Thielecke

2010 ◽  
Vol 22 (1) ◽  
pp. 351
Author(s):  
A. J. Maki ◽  
I. Omelogu ◽  
E. Monaco ◽  
M. E. McGee-Lawrence ◽  
R. M. Bradford ◽  
...  

During winter hibernation, grizzly bears (Ursus arctos horribilis) do not eat but instead rely on internal fat stores as a primary source of metabolic energy. The resulting seasonal fluctuations in appetite and body mass make the grizzly bear a naturally occurring animal model for human conditions such as obesity and anorexia. An in vitro model of hibernating bear stem cells might enhance our understanding of processes such as stem cell proliferation and differentiation. Mesenchymal stem cells, derived from bone marrow and adipose tissue among others, differentiate into adipocytes and might play important roles in energy metabolism. In the current study, we examined the in vitro viability and morphology of mesenchymal stem cells isolated from grizzly bear adipose tissue (ADSC) and bone marrow (BMSC); these ADSC and BMSCs underwent adipogenic differentiation for 0, 7, 14, 21, and 28 days. Bone marrow stem cells and ADSC were isolated using mechanical disaggregation, collagenase digestion, centrifugation, and plating onto tissue culture polystyrene. Cell viability and proliferation was quantified using the colony forming unit assay and a hemocytometer. Both stem cell types were differentiated into adipocytes using 10 μM insulin, 1 μM dexamethasone, and 0.5 mM isobutylmethylxanthine (all Sigma- Aldrich, St. Louis, MO, USA) with the addition of 10% fetal bovine (FBS) or bear serum from the active feeding period. Adipogenic differentiation was confirmed using Oil Red O and quantified using ImageJ. Statistical analysis was performed using an unpaired t-test between treatments of the same time point. All cells were isolated within 28 h of tissue harvest. Adipose-derived stem cells formed an average of 11 colonies (0.011%), whereas BMSC formed 1.5 colonies (0.0015%) per 100 000 cells. Doubling time forADSC was approximately 54 h in 10% FBS. BothADSC and BMSC had an initial spindle-shaped morphology, which gradually became more rounded during adipogenic differentiation. For bear serum at Day 28, ADSC had a significantly (P < 0.01) greater stained area per cell than did BMSC. In summary, both types of mesenchymal stem cells successfully differentiated into adipocytes and maintained viability. In conclusion, grizzly bear mesenchymal stem cells canbesuccessfully isolated, expanded, and differentiated in culture. These results allow for future studies using the bear as an in vitro model for fat metabolism during hibernation and active periods. This work was partially supported by the Carle Foundation Hospital, the Intel Scholar’s Research Program, USDA Multi-State Research Project W1171, and the Illinois Regenerative Medicine Institute (IDPH # 63080017). In addition, the authors would like to thank Agatha Luszpak for support with the analysis.


2003 ◽  
Vol 11 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Lenka Janderová ◽  
Michele McNeil ◽  
Angela N. Murrell ◽  
Randall L. Mynatt ◽  
Steven R. Smith

PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e78226 ◽  
Author(s):  
Katja Kriebel ◽  
Anne Biedermann ◽  
Bernd Kreikemeyer ◽  
Hermann Lang

2020 ◽  
Author(s):  
Saúl Pérez-Castrillo ◽  
María Luisa González-Fernández ◽  
Jessica Álvarez-Suárez ◽  
Jaime Sánchez-Lázaro ◽  
Marta Esteban-Blanco ◽  
...  

Abstract Introduction: Osteoarthritis (OA) is a degenerative joint disease which affects the whole joint structure. Many authors have focused on the factors responsible for the development of inflammatory processes involved in OA. Adipose tissue-derived mesenchymal stem cells (ASCs) represent a promising alternative of cell-based therapy strategy in the treatment of OA which could be combined with any other drug. Chondroitin sulfate plays a protective role in the joint based on the decrease of pro-inflammatory cytokines, thus having an important role in activating and inhibiting the metabolic pathways in chondrocytes. Aims: The effectiveness of chondroitin sulfate and ASCs combined in an in vitro model of OA has been evaluated in this study. Materials: Cytokines and factors which are involved in OA as well as specific cartilage gene expression after adding ASCs and chondroitin sulfate have been discussed in detail. Results: Our results show a decrease in the expression of all genes related to the pro-inflammatory cytokines analysed. Although there was no increase in the expression of the specific genes of the cartilage matrix, such as collagen type II and aggrecan. Conclusions: This study shows the effectiveness of association of ASCs and chondroitin sulfate for the treatment of OA.


Sign in / Sign up

Export Citation Format

Share Document