scholarly journals Crack-healing, a Novel Approach for a Laser-based Powder Bed Fusion of High-performance Ceramic Oxides

2021 ◽  
pp. 100021
Author(s):  
Fabrizio Verga ◽  
Małgorzata Makowska ◽  
Gugliemo Cellerai ◽  
Kevin Florio ◽  
Manfred Schmid ◽  
...  
2021 ◽  
Author(s):  
Yuk Lun Simon Chan ◽  
Olaf Diegel ◽  
Xun Xu

Abstract Laser powder bed fusion (LPBF) is a metal additive manufacturing (AM) process for fabricating high-performance functional parts and tools in various metallic alloys, such as titanium, aluminium and tool steels. The process can produce geometrically complex features such as conformal cooling channels (CCC) in plastic injection mould inserts to improve cooling efficiency. A recent attempt using a hybrid-build LPBF AM technique to fabricate aluminium mould inserts with CCC attained a substantial reduction in processing time, making it an attractive alternative method to the mould-making industry. Also, the successful bonding of aluminium powder with wrought aluminium alloys proved the practicability of this concept. This study further investigates whether a similarly successful outcome could apply to tool steel since tool steel is the preferred material for constructing high-grade high-volume plastic injection moulds. In this investigation, hybrid 18Ni300 powder-wrought 17-4 PH steel parts were additively fabricated using the hybrid-build LPBF technique, followed by various post-build heat treatments. The mechanical and metallurgical properties of the samples’ bonded interface were examined. Microstructure analysis revealed homogenous powder-substrate fusion across the interface region. Results from tensile tests confirmed strong powder-substrate bonding as none of the tensile fractures occurred at the interface. A direct post-build one-hour age-hardening treatment achieved the best combination of hardness, tensile strength, and ductility. The overall result demonstrates that hybrid-built 18Ni300-17-4 PH steel can be a material choice for manufacturing durable and high-performance injection mould inserts for high-volume production.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2156 ◽  
Author(s):  
Byeong Hoon Bae ◽  
Jeong Woo Lee ◽  
Jae Min Cha ◽  
Il-Won Kim ◽  
Hyun-Do Jung ◽  
...  

Powder bed fusion (PBF) additive manufacturing (AM) is currently used to produce high-efficiency, high-density, and high-performance products for a variety of applications. However, existing AM methods are applicable only to metal materials and not to high-melting-point ceramics. Here, we develop a composite material for PBF AM by adding Al2O3 to a glass material using laser melting. Al2O3 and a black pigment are added to a synthesized glass frit for improving the composite strength and increased laser-light absorption, respectively. Our sample analysis shows that the glass melts to form a composite when the mixture is laser-irradiated. To improve the sintering density, we heat-treat the sample at 750 °C to synthesize a high-density glass frit composite. As per our X-ray diffraction (XRD) analysis to confirm the reactivity of the glass frit and Al2O3, we find that no reactions occur between glass and crystalline Al2O3. Moreover, we obtain a high sample density of ≥95% of the theoretical density. We also evaluate the composite’s mechanical properties as a function of the Al2O3 content. Our approach facilitates the manufacturing of ceramic 3D structures using glass materials through PBF AM and affords the benefits of reduced process cost, improved performance, newer functionalities, and increased value addition.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4251
Author(s):  
Gregor Graf ◽  
Niki Nouri ◽  
Stefan Dietrich ◽  
Frederik Zanger ◽  
Volker Schulze

As part of an international research project (HiPTSLAM), the development and holistic processing of high-performance tool steels for AM is a promising topic regarding the acceptance of the laser powder bed fusion (PBF-LB) technology for functionally optimized die, forming and cutting tools. In a previous work, the newly developed maraging tool steel FeNiCoMoVTiAl was qualified to be processed by laser powder bed fusion (PBF-LB) with a material density of more than 99.9% using a suitable parameter set. To exploit further optimization potential, the influence of dual-laser processing strategies on the material structure and the resulting mechanical properties was investigated. After an initial calibration procedure, the build data were modified so that both lasers could be aligned to the same scanning track with a defined offset. A variation of the laser-based post-heating parameters enabled specific in-situ modifications of the thermal gradients compared to standard single-laser scanning strategies, leading to corresponding property changes in the produced material structure. An increase in microhardness of up to 15% was thus obtained from 411 HV up to 471 HV. The results of the investigation can be used to derive cross-material optimization potential to produce functionally graded high-performance components on PBF-LB systems with synchronized multi-laser technology.


Author(s):  
Zhenhua Zhang ◽  
Quanquan Han ◽  
Shengzhao Yang ◽  
Yingyue Yin ◽  
Jian Gao ◽  
...  

Procedia CIRP ◽  
2019 ◽  
Vol 79 ◽  
pp. 85-88
Author(s):  
Flaviana Calignano ◽  
Oscar Antonio Peverini ◽  
Giuseppe Addamo ◽  
Fabio Paonessa ◽  
Diego Manfredi ◽  
...  

Author(s):  
Ying Zhang ◽  
Guoying Dong ◽  
Sheng Yang ◽  
Yaoyao Fiona Zhao

Abstract Laser-based powder bed fusion (LPBF) process is a type of additive manufacturing process which is able to produce complex metal geometries. The fast development of laser-based powder bed fusion process offers new opportunities to the industries. Comparing to the conventional manufacturing process, LPBF offers more freedom on the shape complexity and hierarchical complexity. Even though the LPBF process has many advantages, there are still many constraints on LPBF. At the current stage, LPBF process still has a very high threshold for industrial application. It requires designers to have extensive knowledge of LPBF process to make the design manufacturable. The need for the automatic manufacturability analysis in the early design stage is essential. In this paper, a novel approach on analyzing the manufacturability of LPBF process is introduced. The machine learning model is developed to predict the manufacturability of LPBF. The unique dataset is established as the training examples. The proposed method achieves very competitive accuracy on analyzing the manufacturability of LBPF. The limitation and future work will be discussed in the end.


2019 ◽  
Author(s):  
Yufan Zhao ◽  
Yuichiro Koizumi ◽  
Kenta Aoyagi ◽  
Daixiu Wei ◽  
Kenta Yamanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document