scholarly journals Cancer stromal targeting therapy to overcome the pitfall of EPR effect

2020 ◽  
Vol 154-155 ◽  
pp. 142-150 ◽  
Author(s):  
Yasuhiro Matsumura
Keyword(s):  
Author(s):  
Saisai Yue ◽  
Xin Zhang ◽  
Yuping Xu ◽  
Lichong Zhu ◽  
Junwei Cheng ◽  
...  

Nanomedicine based tumor targeting therapy has emerged as a promising strategy to overcome the lack of specificity of conventional chemotherapeutic agents. The “passive” targeting caused by tumor EPR effect and...


2016 ◽  
Vol 23 (39) ◽  
pp. 4442-4449 ◽  
Author(s):  
Avi Peretz ◽  
Izhar Ben Shlomo ◽  
Orna Nitzan ◽  
Luigi Bonavina ◽  
Pmela M. Schaffer ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xue Wang ◽  
Wanwei Zheng ◽  
Qing Shen ◽  
Yahua Wang ◽  
Yujen Tseng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eric J. Hsu ◽  
Xuezhi Cao ◽  
Benjamin Moon ◽  
Joonbeom Bae ◽  
Zhichen Sun ◽  
...  

AbstractAs a potent lymphocyte activator, interleukin-2 (IL-2) is an FDA-approved treatment for multiple metastatic cancers. However, its clinical use is limited by short half-life, low potency, and severe in vivo toxicity. Current IL-2 engineering strategies exhibit evidence of peripheral cytotoxicity. Here, we address these issues by engineering an IL-2 prodrug (ProIL2). We mask the activity of a CD8 T cell-preferential IL-2 mutein/Fc fusion protein with IL2 receptor beta linked to a tumor-associated protease substrate. ProIL2 restores activity after cleavage by tumor-associated enzymes, and preferentially activates inside tumors, where it expands antigen-specific CD8 T cells. This significantly reduces IL-2 toxicity and mortality without compromising antitumor efficacy. ProIL2 also overcomes resistance of cancers to immune checkpoint blockade. Lastly, neoadjuvant ProIL2 treatment can eliminate metastatic cancer through an abscopal effect. Taken together, our approach presents an effective tumor targeting therapy with reduced toxicity.


2014 ◽  
Vol 99 (12) ◽  
pp. E2463-E2471 ◽  
Author(s):  
Yves Mear ◽  
Marie-Pierre Blanchard ◽  
Céline Defilles ◽  
Thierry Brue ◽  
Dominique Figarella-Branger ◽  
...  

Context: The ghrelin receptor GHS-R1a is highly expressed in human somatotroph adenomas and exhibits unusually high basal signaling activity. In humans, the suppression of this constitutive activity by mutation induces a short stature. Objective: Using a GHS-R1a inverse agonist, modified substance P (MSP), we explored the role of GHS-R1a constitutive activity in GH hypersecretion from somatotroph adenomas and as a putative therapeutic target. Design: The effects of MSP were assessed on GH secretion from 19 human somatotroph tumors in vitro. Moreover, these effects were compared with those of octreotide (somatostatin receptor subtype 2 [sst2] agonist) and with the combination of both drugs. Expression and localization of GHS-R1a and sst2 were studied. Results: For all tumors, MSP inhibited GH secretion in a dose-dependent manner from 13 to 64%. Moreover, MSP enhanced octreotide-induced GH inhibition. For five tumors, the effects of combined MSP plus octreotide treatment were significantly higher than the sum of effects of each drug alone. MSP increased the membrane localization of GHS-R1a and of microdomains colocalizing sst2-GHS-R1a, highlighting the cooperation between the two drugs. Conclusions: The GHS-R1a inverse agonist could open new therapeutic options for acromegalic patients, particularly patients partially sensitive to octreotide whose GH secretion is not completely controlled by the sst2 agonist.


Sign in / Sign up

Export Citation Format

Share Document