magnetic fe3o4 nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 35)

H-INDEX

32
(FIVE YEARS 2)



Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1354
Author(s):  
Hongwei Sun ◽  
Jingjie Yang ◽  
Yue Wang ◽  
Yucan Liu ◽  
Chenjian Cai ◽  
...  

In this study, a new type of sludge-derived biochar material with high tetracycline removal efficiency, named magnetic Fe3O4 biochar, was accomplished by KOH activated and loaded with magnetic Fe3O4. The particles with spherical pellets observed by SEM, as well as the XRD patterns, indicated that magnetic Fe3O4 nanoparticles were successfully loaded onto the biochar. We studied the adsorption effects and mechanisms of the following three different adsorption materials for tetracycline: biochar (BC), magnetic Fe3O4, and magnetic biochar (MBC), and the loading conditions and reusability of the materials were also considered. The adsorption effects were as follows: Fe3O4 (94.3%) > MBC (88.3%) > BC (65.7%), and the ratio of biochar to ferric salt was 0.2:1; the removal effect reached the best result. Under an acidic condition, the adsorption capacity of all the materials reached the maximum, and the adsorption of tetracycline in water, by three adsorbents, involves chemical adsorption as the leading process and physical adsorption as the auxiliary process. Various characterizations indicated the removal of tetracycline, including pore filling, electrostatic interaction, hydrogen bond action, and cationic-π action. Complex bridging is a unique adsorption mechanism of magnetic Fe3O4 and magnetic biochar. In addition, the magnetic biochar also possesses π–π bond interaction. The magnetic materials can still maintain a certain amount of adsorption capacity on tetracycline after five cycles. This study proved that the magnetic sludge-based biochar are ideal adsorbents for the removal of tetracycline from water, as well as an effective route for the reclamation of waste sludge.



Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2802
Author(s):  
Feng Wang ◽  
Tingting Liu ◽  
Wen Guan ◽  
Ling Xu ◽  
Shuhao Huo ◽  
...  

In this study, magnetic Fe3O4 nanoparticles (NPs) were used as an effective enhancer to increase the biomass and total lipid production of Chlorella sp. UJ-3. It was found that the biomass of algal cells increased significantly when they were exposed to low concentrations of Fe3O4 NPs (20 mg/L), while the best total lipid content of algal cells was achieved when they were exposed to high concentrations of Fe3O4 NPs (100 mg/L). Therefore, we established a strategy to promote the growth and lipid accumulation of microalgae by initially exposing the algal cells to low concentrations of Fe3O4 NPs and then treating them with an increased concentration of Fe3O4 NPs after 12 days of culture. For this strategy, the biomass and total lipid production of algal cells increased by 50% and 108.7%, respectively, compared to the untreated control. The increase in lipid production and change in the fatty acid composition of Chlorella cells were found to help them to cope with the increased number of reactive oxygen species produced due to oxidative stress in alga cells after the addition of Fe3O4 NPs. This study provided a highly efficient way to improve the lipid production of microalgae using nanoparticles.







Sign in / Sign up

Export Citation Format

Share Document