Tu1615 Diisopropylamine Dichloroacetate, a Novel Pyruvate Dehydrogenase Kinase Inhibitor, As a Potential Metabolic-Targeting Therapy for Cholangiocarcinoma

2016 ◽  
Vol 150 (4) ◽  
pp. S1150
Author(s):  
Longyun Wu ◽  
Chunyan Peng ◽  
Xiaoping Zou
2008 ◽  
Vol 294 (2) ◽  
pp. H570-H578 ◽  
Author(s):  
Stephen L. Archer ◽  
Mardi Gomberg-Maitland ◽  
Michael L. Maitland ◽  
Stuart Rich ◽  
Joe G. N. Garcia ◽  
...  

Pulmonary arterial hypertension (PAH) is a lethal syndrome characterized by vascular obstruction and right ventricular failure. Although the fundamental cause remains elusive, many predisposing and disease-modifying abnormalities occur, including endothelial injury/dysfunction, bone morphogenetic protein receptor-2 gene mutations, decreased expression of the O2-sensitive K+ channel (Kv1.5), transcription factor activation [hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-activating T cells], de novo expression of survivin, and increased expression/activity of both serotonin transporters and platelet-derived growth factor receptors. Together, these abnormalities create a cancerlike, proliferative, apoptosis-resistant phenotype in pulmonary artery smooth muscle cells (PASMCs). A possible unifying mechanism for PAH comes from studies of fawn-hooded rats, which manifest spontaneous PAH and impaired O2 sensing. PASMC mitochondria normally produce reactive O2 species (ROS) in proportion to Po2. Superoxide dismutase 2 (SOD2) converts intramitochondrial superoxide to diffusible H2O2, which serves as a redox-signaling molecule, regulating pulmonary vascular tone and structure through effects on Kv1.5 and transcription factors. O2 sensing is mediated by this mitochondria-ROS-HIF-1α-Kv1.5 pathway. In PAH and cancer, mitochondrial metabolism and redox signaling are reversibly disordered, creating a pseudohypoxic redox state characterized by normoxic decreases in ROS, a shift from oxidative to glycolytic metabolism and HIF-1α activation. Three newly recognized mitochondrial abnormalities disrupt the mitochondria-ROS-HIF-1α-Kv1.5 pathway: 1) mitochondrial pyruvate dehydrogenase kinase activation, 2) SOD2 deficiency, and 3) fragmentation and/or hyperpolarization of the mitochondrial reticulum. The pyruvate dehydrogenase kinase inhibitor, dichloroacetate, corrects the mitochondrial abnormalities in experimental models of PAH and human cancer, causing a regression of both diseases. Mitochondrial abnormalities that disturb the ROS-HIF-1α-Kv1.5 O2-sensing pathway contribute to the pathogenesis of PAH and cancer and constitute promising therapeutic targets.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yeram Park ◽  
Deunsol Hwang ◽  
Hun-Young Park ◽  
Jisu Kim ◽  
Kiwon Lim

Aims. Hypoxic exposure improves glucose metabolism. We investigated to validate the hypothesis that carbohydrate (CHO) oxidation could increase in mice exposed to severe hypoxic conditions. Methods. Seven-week-old male ICR mice (n=16) were randomly divided into two groups: the control group (CON) was kept in normoxic condition (fraction of inspired O2=21%) and the hypoxia group (HYP) was exposed to hypoxic condition (fraction of inspired O2=12%, ≈altitude of 4,300 m). The CON group was pair-fed with the HYP group. After 3 weeks of hypoxic exposure, we measured respiratory metabolism (energy expenditure and substrate utilization) at normoxic conditions for 24 hours using an open-circuit calorimetry system. In addition, we investigated changes in carbohydrate mechanism-related protein expression, including hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), and regulator of the genes involved in energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC1α) in soleus muscle. Results. Energy expenditure (EE) and CHO oxidation over 24 hours were higher in the HYP group by approximately 15% and 34% (p<0.001), respectively. Fat oxidation was approximately 29% lower in the HYP group than the CON group (p<0.01). Body weight gains were significantly lower in the HYP group than in the CON group (CON vs. HYP; 1.9±0.9 vs. −0.3±0.9; p<0.001). Hypoxic exposure for 3 weeks significantly reduced body fat by approximately 42% (p<0.001). PDH and PGC1α protein levels were significantly higher in the HYP group (p<0.05). Additionally, HK2 was approximately 21% higher in the HYP group. Conclusions. Hypoxic exposure might significantly enhance CHO oxidation by increasing the expression of PDH and HK2. This investigation can be useful for patients with impaired glucose metabolism, such as those with type 2 diabetes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ling Jin ◽  
Eun-Yeong Kim ◽  
Tae-Wook Chung ◽  
Chang Woo Han ◽  
So Young Park ◽  
...  

AbstractMost cancer cells primarily produce their energy through a high rate of glycolysis followed by lactic acid fermentation even in the presence of abundant oxygen. Pyruvate dehydrogenase kinase (PDK) 1, an enzyme responsible for aerobic glycolysis via phosphorylating and inactivating pyruvate dehydrogenase (PDH) complex, is commonly overexpressed in tumors and recognized as a therapeutic target in colorectal cancer. Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata Bunge (Compositae). Here, we report that HsA is a PDK1 inhibitor can reduce the growth of colorectal cancer and consequent activation of mitochondrial ROS-dependent apoptotic pathway both in vivo and in vitro. Computational simulation and biochemical assays showed that HsA directly binds to the lipoamide-binding site of PDK1, and subsequently inhibits the interaction of PDK1 with the E2 subunit of PDH complex. As a result of PDK1 inhibition, lactate production was decreased, but oxygen consumption was increased. Mitochondrial ROS levels and mitochondrial damage were also increased. Consistent with these observations, the apoptosis of colorectal cancer cells was promoted by HsA with enhanced activation of caspase-3 and -9. These results suggested that HsA might be a potential candidate for developing a novel anti-cancer drug through suppressing cancer metabolism.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 325
Author(s):  
Carolina Venturoli ◽  
Ilaria Piga ◽  
Matteo Curtarello ◽  
Martina Verza ◽  
Giovanni Esposito ◽  
...  

Pyruvate dehydrogenase kinase 1 (PDK1) blockade triggers are well characterized in vitro metabolic alterations in cancer cells, including reduced glycolysis and increased glucose oxidation. Here, by gene expression profiling and digital pathology-mediated quantification of in situ markers in tumors, we investigated effects of PDK1 silencing on growth, angiogenesis and metabolic features of tumor xenografts formed by highly glycolytic OC316 and OVCAR3 ovarian cancer cells. Notably, at variance with the moderate antiproliferative effects observed in vitro, we found a dramatic negative impact of PDK1 silencing on tumor growth. These findings were associated with reduced angiogenesis and increased necrosis in the OC316 and OVCAR3 tumor models, respectively. Analysis of viable tumor areas uncovered increased proliferation as well as increased apoptosis in PDK1-silenced OVCAR3 tumors. Moreover, RNA profiling disclosed increased glucose catabolic pathways—comprising both oxidative phosphorylation and glycolysis—in PDK1-silenced OVCAR3 tumors, in line with the high mitotic activity detected in the viable rim of these tumors. Altogether, our findings add new evidence in support of a link between tumor metabolism and angiogenesis and remark on the importance of investigating net effects of modulations of metabolic pathways in the context of the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document