Numerical simulation on the effect of welding parameters on welding residual stresses in T92/S30432 dissimilar welded pipe

2014 ◽  
Vol 68 ◽  
pp. 70-79 ◽  
Author(s):  
Lei Zhao ◽  
Jun Liang ◽  
Qunpeng Zhong ◽  
Chao Yang ◽  
Biao Sun ◽  
...  
Author(s):  
Abul Fazal M. Arif ◽  
Ahmad S. Al-Omari ◽  
Anwar K. Sheikh ◽  
Yagoub Al-Nassar ◽  
M. Anis

Double submerged spiral-welded pipe (SWP) is used extensively throughout the world for large-diameter pipelines. Fabrication-induced residual stresses in spiral welded pipe have received increasing attention in gas, oil and petrochemical industry. Several studies reported in the literature verify the critical role of residual stresses in the failure of these pipes. Therefore, it is important that such stresses are accounted for in safety assessment procedures such as the British R6 and BS7910. This can be done only when detailed information on the residual stress distribution in the component is known. In industry, residual stresses in spiral welded pipe are measured experimentally by means of destructive techniques known as Ring Splitting Test. In this study, statistical analysis and linear-regression modeling were used to study the effect of several structural, material and welding parameters on ring splitting test opening for spiral welded pipes. The experimental results were employed to develop an appropriate regression equation, and to predict the residual stress on the spiral welded pipes. It was found that the developed regression equation explains 36.48% of the variability in the ring opening. In the second part, a 3-D finite element model is presented to perform coupled-field analysis of the welding of spiral pipe. Using this model, temperature as well as stress fields in the region of the weld edges is predicted.


2012 ◽  
Vol 13 (2) ◽  
Author(s):  
Muhammad Abid

ABSTRACT: Pipe and flange joints are commonly used in petrochemical, nuclear and process industries. Commonly, welding is used to make these joints which produces residual stresses and distortions. These stresses have detrimental effects on the structural integrity and service performance of the welded pipe joints. The objective of this study is to investigate the residual stresses and distortions during Gas Metal Arc Welding of pipe of schedule 40, nominal diameter 200 mm with different ANSI flanges of class numbers 150, 300, 600, 900, 1500, and 2500. Welding parameters including: voltage, current and heat as inputs were selected based on the literature available. The behaviour of the flanges of different classes is also discussed. In addition, the finite element methodology presented, in this paper, can be helpful for developing welding procedures for a range of pipe flange welded joint sizes in order to control the residual stresses and deformations. This will lead to optimised performance during bolt up and operating conditions.ABSTRAK: Paip dan sambungan flan biasanya digunakan dalam industri petrokimia, nuklear dan proses. Kimpalan menghasilkan tegasan sisa dan herotan, yang memberikan kesan yang merbahaya ke atas integriti struktur dan prestasi servis sambungan kimpalan paip. Objektif kajian ini adalah untuk mengkaji tegasan sisa dan herotan ketika kimpalan arka logam gas paip berjadual 40, diameter nominal 200mm dengan flan ANSI yang berbeza kelas # 150, 300, 600, 900, 1500, dan 2500. Parameter kimpalan termasuklah; voltan, arus dan haba input yang dipilih berdasarkan literatur sediada. Kelakuan flan yang berbeza kelas telah dibincangkan. Kaedah elemen finit yang dibentangkan adalah berguna dalam membangunkan prosedur kimpalan bagi julat saiz kimpalan flan paip unutk mengawal tegasan sisa dan canggaan i.e. bagi mengoptimakan prestasi ketika bolt up dan sedang beroperasi.                                                                 KEYWORDS: finite element; residual stresses; distortion; welding; pipe-flange joint; different classes


2020 ◽  
Vol 10 (1) ◽  
pp. 5-12
Author(s):  
Mahmood Alhafadhi ◽  
György Krállics

The objective of this article is to predict the residual welding stress in a dissimilar pipe weld. The 2D model, instead of 3D was used to reduce the time and cost of the numerical calculation. The 2D numerical simulation MSC MARC code is used to predict the residual stress developed during pipe welding. The present model was validated using hardness measurement. Good agreement was found between the measurement and numerical simulation results. The effects of welding parameters on residual stress field on the outer and inner surface were assessed. The effect of welding parameter (welding current) is examined. The axial and hoop residual stresses in dissimilar pipe joints of different thickness for pipe weld were simulated in outer and inner surfaces. When the other parameters remain fixed, and the current has great effect on the weld shape and size, and then affects the residual stress level significantly.


2015 ◽  
Vol 57 (7-8) ◽  
pp. 628-634
Author(s):  
Jing Chen ◽  
Liying Wang ◽  
Zhendong Shi ◽  
Zhen Dai ◽  
Meiqing Guo

Author(s):  
Dean Deng ◽  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Recent discoveries of stress corrosion cracking (SCC) at nickel-based metals in pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It has been recognized that welding residual stress is an important factor causing the issue of SCC in a weldment. In this study, both numerical simulation technology and experimental method were employed to investigate the characteristics of welding residual stress distribution in several typical welded joints, which are used in nuclear power plants. These joints include a thick plate butt-welded Alloy 600 joint, a dissimilar metal J-groove set-in joint and a dissimilar metal girth-butt joint. First of all, numerical simulation technology was used to predict welding residual stresses in these three joints, and the influence of heat source model on welding residual stress was examined. Meanwhile, the influence of other thermal processes such as cladding, buttering and heat treatment on the final residual stresses in the dissimilar metal girth-butt joint was also clarified. Secondly, we also measured the residual stresses in three corresponding mock-ups. Finally, the comparisons of the simulation results and the measured data have shed light on how to effectively simulate welding residual stress in these typical joints.


1994 ◽  
Vol 116 (4) ◽  
pp. 550-555 ◽  
Author(s):  
M. Gremaud ◽  
W. Cheng ◽  
I. Finnie ◽  
M. B. Prime

Introducing a thin cut from the surface of a part containing residual stresses produces a change in strain on the surface. When the strains are measured as a function of the depth of the cut, residual stresses near the surface can be estimated using the compliance method. In previous work, the unknown residual stress field was represented by a series of continuous polynomials. The present paper shows that for stress states with steep gradients, superior predictions are obtained by using “overlapping piecewise functions” to represent the stresses. The stability of the method under the influence of random errors and a zero shift is demonstrated by numerical simulation.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Yao Ren ◽  
Anna Paradowska ◽  
Bin Wang ◽  
Elvin Eren ◽  
Yin Jin Janin

This research investigated the effects of global (in other words, furnace-based) and local post weld heat treatment (PWHT) on residual stress (RS) relaxation in API 5L X65 pipe girth welds. All pipe spools were fabricated using identical pipeline production procedures for manufacturing multipass narrow gap welds. Nondestructive neutron diffraction (ND) strain scanning was carried out on girth welded pipe spools and strain-free comb samples for the determination of the lattice spacing. All residual stress measurements were carried out at the KOWARI strain scanning instrument at the Australian Nuclear Science and Technology Organization (ANSTO). Residual stresses were measured on two pipe spools in as-welded condition and two pipe spools after local and furnace PWHT. Measurements were conducted through the thickness in the weld material and adjacent parent metal starting from the weld toes. Besides, three line-scans along pipe length were made 3 mm below outer surface, at pipe wall midthickness, and 3 mm above the inner surface. PWHT was carried out for stress relief; one pipe was conventionally heat treated entirely in an enclosed furnace, and the other was locally heated by a flexible ceramic heating pad. Residual stresses measured after PWHT were at exactly the same locations as those in as-welded condition. Residual stress states of the pipe spools in as-welded condition and after PWHT were compared, and the results were presented in full stress maps. Additionally, through-thickness residual stress profiles and the results of one line scan (3 mm below outer surface) were compared with the respective residual stress profiles advised in British Standard BS 7910 “Guide to methods for assessing the acceptability of flaws in metallic structures” and the UK nuclear industry's R6 procedure. The residual stress profiles in as-welded condition were similar. With the given parameters, local PWHT has effectively reduced residual stresses in the pipe spool to such a level that it prompted the thought that local PWHT can be considered a substitute for global PWHT.


2009 ◽  
Vol 83-86 ◽  
pp. 125-132 ◽  
Author(s):  
Sebastien Gallée ◽  
Antoine Martin ◽  
Vincent Robin ◽  
Daniel Nelias

The manufacturing of the ITER (International Thermonuclear Experimental Reactor) vacuum vessel involves the welding of thick deformed plates. The aim of this study is to investigate the influence of forming residual stresses on the welding distortions of two thick plates. The plates are deformed using a three point rolling process. A first numerical simulation is performed to investigate the residual stresses induced by this process. The forming residual stresses are taken into account as initial conditions to perform the electron beam welding simulation of a deformed plate. This simulation first requires calibrating the heat source. Two welding simulations are then performed: the first one with residual stresses and the second one without. The comparison of the simulation results points out a low effect of the residual stresses on the electron beam welding distortions. As a result, in the next electron beam welding simulations of the vacuum vessel, no forming residual stresses will be taken into account.


Sign in / Sign up

Export Citation Format

Share Document