scholarly journals On the prediction of three-phase relative permeabilities using two-phase constitutive relationships

2020 ◽  
Vol 145 ◽  
pp. 103731
Author(s):  
Gerhard Schäfer ◽  
Raphaël di Chiara Roupert ◽  
Amir H. Alizadeh ◽  
Mohammad Piri
2021 ◽  
Author(s):  
Mohamed Mehdi El Faidouzi

Abstract Water-alternating-gas (WAG) injection, both miscible and immiscible, is a widely used enhanced oil recovery method with over 80 field cases. Despite its prevalence, the numerical modeling of the physical processes involved remains poorly understood, and existing models often lack predictability. Part of the complexity stems from the component exchange between gas and oil and the hysteretic relative permeability effects. Thus, improving the reliability of numerical models requires the calibration of the equation of state (EOS) against phase behavior data from swelling/extraction and slim-tube tests, and the calibration of the three-phase relative permeability model against WAG coreflood experiments. This paper presents the results and interpretation of a complete set of two-phase and thee-phase displacement experiments on mixed-wet carbonate rocks. The three-phase WAG experiments were conducted on the same composite core at near-miscible reservoir condition; experiments differ in the injection order and length of their injection cycles. First, the two-phase water/oil and gas/oil displacement experiments and first cycles of WAG were used to estimate the two-phase relative permeabilities. Then, a synchronized history-matching procedure over the full set of WAG experiments and cycles was carried out to tune Larsen ans Skauge WAG hysteresis model—namely the Land gas traping parameter, the gas reduction exponent, the residual oil reduction factor and three-phase water relative permeability. The second part of this paper deals with the multiphase upscaling of microscopic displacement properties from plug to coarse grid reservoir scale. The two-phase relative permeability curves and three-phase WAG parameters were upscaled using a sector model to preserve the displacement process and reservoir performance. The result of the coreflood calibration indicate that the two-phase displacement and first cycles of WAG yield a consistent set of two-phase relative permeabilities. Including the full set of WAG experiments allowed a robust calibration of the hysteresis model.


2005 ◽  
Vol 8 (01) ◽  
pp. 33-43 ◽  
Author(s):  
Yildiray Cinar ◽  
Franklin M. Orr

Summary In this paper, we present results of an experimental investigation of the effects of variations in interfacial tension (IFT) on three-phase relative permeability. We report results that demonstrate the effect of low IFT between two of three phases on the three-phase relative permeabilities. To create three-phase systems in which IFT can be con-trolled systematically, we used a quaternary liquid system composed of hexadecane(C16), n-butanol (NBA), water (H2O), and isopropanol (IPA). Measured equilibrium phase compositions and IFTs are reported. The reported phase behavior of the quaternary system shows that the H2O-rich phase should represent the "gas" phase, the NBA-rich phase should represent the "oil" phase, and the C16-rich phase should represent the "aqueous" phase. Therefore, we used oil-wet Teflon (PTFE) bead packs to simulate the fluid flow in a water-wet oil reservoir. We determined phase saturations and three-phase relative permeabilities from recovery and pressure-drop data using an extension of the combined Welge/Johnson-Bossler-Naumann (JBN) method to three-phase flow. Measured three-phase relative permeabilities are reported. The experimental results indicate that the wetting-phase relative permeability was not affected by IFT variation, whereas the other two-phase relative permeabilities were clearly affected. As IFT decreases, the oil and gas phases become more mobile at the same phase saturations. For gas/oil IFTs in the range of 0.03 to 2.3 mN/m, we observed an approximately 10-fold increase in the oil and gas relative permeabilities against an approximately 100-fold decrease in the IFT. Introduction Variations in gas and oil relative permeabilities as a function of IFT are of particular importance in the area of compositional processes such as high-pressure gas injection, where oil and gas compositions can vary significantly both spatially and temporally. Because gas-injection processes routinely include three-phase flow (either because the reservoir has been water-flooded previously or because water is injected alternately with gas to improve overall reservoir sweep efficiency), the effect of IFT variations on three-phase relative permeabilities must be delineated if the performance of the gas-injection process is to be predicted accurately. The development of multicontact miscibility in a gas-injection process will create zones of low IFT between gas and oil phases in the presence of water. Although there have been studies of the effect of low IFT on two-phase relative permeability,1–14 there are limited experimental data published so far analyzing the effect of low IFT on three-phase relative permeabilities.15,16 Most authors have focused on the effect of IFT on oil and solvent relative permeabilities.17 Experimental results show that residual oil saturation and relative permeability are strongly affected by IFT, especially when the IFT is lower than approximately 0.1 mN/m (corresponding to a range of capillary number of 10–2 to 10–3). Bardon and Longeron3 observed that oil relative permeability increased linearly as IFT was reduced from approximately 12.5 mN/m to 0.04 mN/m and that for IFT below 0.04, the oil relative permeability curves shifted more rapidly with further reductions in IFT. Later, Asar and Handy6 showed that oil relative permeability curves began to shift as IFT was reduced below 0.18 mN/m for a gas/condensate system near the critical point. Delshad et al.15 presented experimental data for low-IFT three-phase relative permeabilities in Berea sandstone cores. They used a brine/oil/surfactant/alcohol mixture that included a microemulsion and excess oil and brine. The measurements were done at steady-state conditions with a constant capillary number of 10–2 between the microemulsion and other phases. The IFTs of microemulsion/oil and microemulsion/brine were low, whereas the IFT between oil and brine was high. They concluded that low-IFT three-phase relative permeabilities are functions of their own saturations only. Amin and Smith18 recently have published experimental data showing that the IFTs for each binary mixture of brine, oil, and gas phases vary as pressure increases(Fig. 1). Fig. 1 shows that the IFT of a gas/oil pair decreases as the pressure increases, whereas the IFTs of the gas/brine and oil/brine pairs approach each other.


1984 ◽  
Vol 24 (02) ◽  
pp. 224-232 ◽  
Author(s):  
F.J. Fayers ◽  
J.D. Matthews

Abstract This paper examines normalized forms of Stone's two methods for predicting three-phase relative permeabilities. Recommendations are made on selection of the residual oil parameter, S om, in Method I. The methods are tested against selected published three-phase experimental data, using the plotting program called CPS-1 to infer improved data fitting. It is concluded that the normalized Method I with the recommended form for S om, is superior to Method II. Introduction Stone has produced two methods for estimating three-phase relative permeability from two-phase data. Both models assume a dominant wetting phase (usually water), a dominant nonwetting phase (gas), and an intermediate wetting phase (usually oil). The relative permeabilities for the water and gas are assumed to permeabilities for the water and gas are assumed to depend entirely on their individual saturations because they occupy the smallest and largest pores, respectively. The oil occupies the intermediate-size pores so that the oil relative permeability is an unknown function of water and gas saturation. For his first method, Stone proposed a formula for oil relative, permeability that was a product of oil relative permeability in the absence of gas, oil relative permeability in the absence of gas, oil relative permeability in the absence of mobile water, and some permeability in the absence of mobile water, and some variable scaling factors. He compared this formula with the experimental results of Corey et al., Dalton et al., and Saraf and Fatt. The formula is likely to be most in error at low oil relative permeability where more data are needed that show the behavior of residual oil saturation as a function of mixed gas and water saturations. In particular, the best value for the parameter S om that occurs in the model is not well resolved. In his second method, Stone developed a new formula and compared it against the data of Corey et al., Dalton et al., Saraf And Fatt, and some residual oil data from Holmgren and Morse. Stone suggested that his second method gave reasonable agreement with experiments without the need to include the parameter S om. If in the absence of residual oil data, S om = 0 is used in the first method, the second method is then better than the first method, although it tends to under predict relative permeability. Dietrich and Bondor later showed that Stone's second method did not adequately approximate the two-phase data unless the oil relative permeability at connate water saturation, k rocw, was close to unity. Dietrich and Bondor suggested a normalization that achieved consistency with the two-phase data when k rocw, was not unity. This normalization can be unsatisfactory because k roc an exceed unity in some saturation ranges if k rocw is small. More recently this objection has been overcome by the normalization of Method II introduced by Aziz and Settari. Aziz and Settari also pointed out a similar normalization problem with Stone's first method and suggested an alternative to overcome the deficiency. However, no attempt was made to investigate the accuracy of these normalized formulas with respect to experimental data. In the next section of the paper we review the principal forms of Stone's formulas, and introduce some new ideas on the use and choice of the parameter S om. Later we examine the first of Stone's assumptions that water and gas relative permeabilities are functions only of their respective saturations for a water-wet system. This involves a critical review of all the published experimental measurements. Earlier reviews did not take into account some of the available data. Last, we examine the predictions of normalized Stone's methods for oil relative permeability against the more reliable experimental results. It is concluded that the normalized Stone's Method I with the improved definition of S om is more accurate than the normalized Method II. Mathematical Definition of Three-Phase Relative Permeabilities We briefly review the principal forms of the Stone's formulas that use the two-phase relative permeabilities defined by water/oil displacement in the absence of gas, k rw = k rw (S w) and k row = k row (S w) and gas/oil displacement in the presence of connate water, k rg = k rg (S g) and k rog = k rog (S g). SPEJ p. 224


2015 ◽  
Author(s):  
J. Modaresghazani ◽  
R. G. Moore ◽  
S. A. Mehta ◽  
K. C. Van Fraassen

Sign in / Sign up

Export Citation Format

Share Document