Measurement of Three-Phase Relative Permeability with IFT Variation

2005 ◽  
Vol 8 (01) ◽  
pp. 33-43 ◽  
Author(s):  
Yildiray Cinar ◽  
Franklin M. Orr

Summary In this paper, we present results of an experimental investigation of the effects of variations in interfacial tension (IFT) on three-phase relative permeability. We report results that demonstrate the effect of low IFT between two of three phases on the three-phase relative permeabilities. To create three-phase systems in which IFT can be con-trolled systematically, we used a quaternary liquid system composed of hexadecane(C16), n-butanol (NBA), water (H2O), and isopropanol (IPA). Measured equilibrium phase compositions and IFTs are reported. The reported phase behavior of the quaternary system shows that the H2O-rich phase should represent the "gas" phase, the NBA-rich phase should represent the "oil" phase, and the C16-rich phase should represent the "aqueous" phase. Therefore, we used oil-wet Teflon (PTFE) bead packs to simulate the fluid flow in a water-wet oil reservoir. We determined phase saturations and three-phase relative permeabilities from recovery and pressure-drop data using an extension of the combined Welge/Johnson-Bossler-Naumann (JBN) method to three-phase flow. Measured three-phase relative permeabilities are reported. The experimental results indicate that the wetting-phase relative permeability was not affected by IFT variation, whereas the other two-phase relative permeabilities were clearly affected. As IFT decreases, the oil and gas phases become more mobile at the same phase saturations. For gas/oil IFTs in the range of 0.03 to 2.3 mN/m, we observed an approximately 10-fold increase in the oil and gas relative permeabilities against an approximately 100-fold decrease in the IFT. Introduction Variations in gas and oil relative permeabilities as a function of IFT are of particular importance in the area of compositional processes such as high-pressure gas injection, where oil and gas compositions can vary significantly both spatially and temporally. Because gas-injection processes routinely include three-phase flow (either because the reservoir has been water-flooded previously or because water is injected alternately with gas to improve overall reservoir sweep efficiency), the effect of IFT variations on three-phase relative permeabilities must be delineated if the performance of the gas-injection process is to be predicted accurately. The development of multicontact miscibility in a gas-injection process will create zones of low IFT between gas and oil phases in the presence of water. Although there have been studies of the effect of low IFT on two-phase relative permeability,1–14 there are limited experimental data published so far analyzing the effect of low IFT on three-phase relative permeabilities.15,16 Most authors have focused on the effect of IFT on oil and solvent relative permeabilities.17 Experimental results show that residual oil saturation and relative permeability are strongly affected by IFT, especially when the IFT is lower than approximately 0.1 mN/m (corresponding to a range of capillary number of 10–2 to 10–3). Bardon and Longeron3 observed that oil relative permeability increased linearly as IFT was reduced from approximately 12.5 mN/m to 0.04 mN/m and that for IFT below 0.04, the oil relative permeability curves shifted more rapidly with further reductions in IFT. Later, Asar and Handy6 showed that oil relative permeability curves began to shift as IFT was reduced below 0.18 mN/m for a gas/condensate system near the critical point. Delshad et al.15 presented experimental data for low-IFT three-phase relative permeabilities in Berea sandstone cores. They used a brine/oil/surfactant/alcohol mixture that included a microemulsion and excess oil and brine. The measurements were done at steady-state conditions with a constant capillary number of 10–2 between the microemulsion and other phases. The IFTs of microemulsion/oil and microemulsion/brine were low, whereas the IFT between oil and brine was high. They concluded that low-IFT three-phase relative permeabilities are functions of their own saturations only. Amin and Smith18 recently have published experimental data showing that the IFTs for each binary mixture of brine, oil, and gas phases vary as pressure increases(Fig. 1). Fig. 1 shows that the IFT of a gas/oil pair decreases as the pressure increases, whereas the IFTs of the gas/brine and oil/brine pairs approach each other.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 990
Author(s):  
Mingxing Bai ◽  
Lu Liu ◽  
Chengli Li ◽  
Kaoping Song

The injection of carbon dioxide (CO2) in low-permeable reservoirs can not only mitigate the greenhouse effect on the environment, but also enhance oil and gas recovery (EOR). For numerical simulation work of this process, relative permeability can help predict the capacity for the flow of CO2 throughout the life of the reservoir, and reflect the changes induced by the injected CO2. In this paper, the experimental methods and empirical correlations to determine relative permeability are reviewed and discussed. Specifically, for a low-permeable reservoir in China, a core displacement experiment is performed for both natural and artificial low-permeable cores to study the relative permeability characteristics. The results show that for immiscible CO2 flooding, when considering the threshold pressure and gas slippage, the relative permeability decreases to some extent, and the relative permeability of oil/water does not reduce as much as that of CO2. In miscible flooding, the curves have different shapes for cores with a different permeability. By comparing the relative permeability curves under immiscible and miscible CO2 flooding, it is found that the two-phase span of miscible flooding is wider, and the relative permeability at the gas endpoint becomes larger.


SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 841-850 ◽  
Author(s):  
H.. Shahverdi ◽  
M.. Sohrabi

Summary Water-alternating-gas (WAG) injection in waterflooded reservoirs can increase oil recovery and extend the life of these reservoirs. Reliable reservoir simulations are needed to predict the performance of WAG injection before field implementation. This requires accurate sets of relative permeability (kr) and capillary pressure (Pc) functions for each fluid phase, in a three-phase-flow regime. The WAG process also involves another major complication, hysteresis, which is caused by flow reversal happening during WAG injection. Hysteresis is one of the most important phenomena manipulating the performance of WAG injection, and hence, it has to be carefully accounted for. In this study, we have benefited from the results of a series of coreflood experiments that we have been performing since 1997 as a part of the Characterization of Three-Phase Flow and WAG Injection JIP (joint industry project) at Heriot-Watt University. In particular, we focus on a WAG experiment carried out on a water-wet core to obtain three-phase relative permeability values for oil, water, and gas. The relative permeabilities exhibit significant and irreversible hysteresis for oil, water, and gas. The observed hysteresis, which is a result of the cyclic injection of water and gas during WAG injection, is not predicted by the existing hysteresis models. We present a new three-phase relative permeability model coupled with hysteresis effects for the modeling of the observed cycle-dependent relative permeabilities taking place during WAG injection. The approach has been successfully tested and verified with measured three-phase relative permeability values obtained from a WAG experiment. In line with our laboratory observations, the new model predicts the reduction of the gas relative permeability during consecutive water-and-gas-injection cycles as well as the increase in oil relative permeability happening in consecutive water-injection cycles.


SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 0799-0808 ◽  
Author(s):  
H.. Shahverdi ◽  
M.. Sohrabi

Summary Large quantities of oil usually remain in oil reservoirs after conventional waterfloods. A significant part of this remaining oil can still be economically recovered by water-alternating-gas (WAG) injection. WAG injection involves drainage and imbibition processes taking place sequentially; therefore, the numerical simulation of the WAG process requires reliable knowledge of three-phase relative permeability (kr) accounting for cyclic-hysteresis effects. In this study, the results of a series of unsteady-state two-phase displacements and WAG coreflood experiments were used to investigate the behavior of three-phase kr and hysteresis effects in the WAG process. The experiments were performed on two different cores with different characteristics and wettability conditions. An in-house coreflood simulator was developed to obtain three-phase relative permeability values directly from unsteady-state WAG experiments by history matching the measured recovery and differential-pressure profiles. The results show that three-phase gas relative permeability is reduced in consecutive gas-injection cycles and consequently the gas mobility and injectivity drop significantly with successive gas injections during the WAG process, under different rock conditions. The trend of hysteresis in the relative permeabilty of gas (krg) partly contradicts the existing hysteresis models available in the literature. The three-phase water relative permeability (krw) of the water-wet (WW) core does not exhibit considerable hysteresis effect during different water injections, whereas the mixed-wet (MW) core shows slight cyclic hysteresis. This may indicate a slight increase of the water injectivity in the subsequent water injections in the WAG process under MW conditions. Insignificant hysteresis is observed in the oil relative permeability (kro) during different gas-injection cycles for both WW and MW rocks. However, a considerable cyclic-hysteresis effect in kro is observed during water-injection cycles of WAG, which is attributed to the reduction of the residual oil saturation (ROS) during successive water injections. The kro of the WW core exhibits much-more cyclic-hysteresis effect than that of the MW core. No models currently exist in reservoir simulators that can capture the observed cyclic-hysteresis effect in oil relative permeability for the WAG process. Investigation of relative permeability data obtained from these displacement tests at different rock conditions revealed that there is a significant discrepancy between two-phase and three-phase relative permeability of all fluids. This highlights that not only the three-phase relative permeability of the intermediate phase (oil), but also the three-phase kr of the wetting phase (water) and nonwetting phase (gas) are functions of two independent saturations.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3265-3279
Author(s):  
Hamidreza Hamdi ◽  
Hamid Behmanesh ◽  
Christopher R. Clarkson

Summary Rate-transient analysis (RTA) is a useful reservoir/hydraulic fracture characterization method that can be applied to multifractured horizontal wells (MFHWs) producing from low-permeability (tight) and shale reservoirs. In this paper, we applied a recently developed three-phase RTA technique to the analysis of production data from an MFHW completed in a low-permeability volatile oil reservoir in the Western Canadian Sedimentary Basin. This RTA technique is used to analyze the transient linear flow regime for wells operated under constant flowing bottomhole pressure (BHP) conditions. With this method, the slope of the square-root-of-time plot applied to any of the producing phases can be used to directly calculate the linear flow parameter xfk without defining pseudovariables. The method requires a set of input pressure/volume/temperature (PVT) data and an estimate of two-phase relative permeability curves. For the field case studied herein, the PVT model is constructed by tuning an equation of state (EOS) from a set of PVT experiments, while the relative permeability curves are estimated from numerical model history-matchingresults. The subject well, an MFHW completed in 15 stages, produces oil, water, and gas at a nearly constant (measured downhole) flowing BHP. This well is completed in a low-permeability,near-critical volatile oil system. For this field case, application of the recently proposed RTA method leads to an estimate of xfk that is in close agreement (within 7%) with the results of a numerical model history match performed in parallel. The RTA method also provides pressure–saturation (P–S) relationships for all three phases that are within 2% of those derived from the numerical model. The derived P–S relationships are central to the use of other RTA methods that require calculation of multiphase pseudovariables. The three-phase RTA technique developed herein is a simple-yet-rigorous and accurate alternative to numerical model history matching for estimating xfk when fluid properties and relative permeability data are available.


2021 ◽  
Author(s):  
Mohamed Mehdi El Faidouzi

Abstract Water-alternating-gas (WAG) injection, both miscible and immiscible, is a widely used enhanced oil recovery method with over 80 field cases. Despite its prevalence, the numerical modeling of the physical processes involved remains poorly understood, and existing models often lack predictability. Part of the complexity stems from the component exchange between gas and oil and the hysteretic relative permeability effects. Thus, improving the reliability of numerical models requires the calibration of the equation of state (EOS) against phase behavior data from swelling/extraction and slim-tube tests, and the calibration of the three-phase relative permeability model against WAG coreflood experiments. This paper presents the results and interpretation of a complete set of two-phase and thee-phase displacement experiments on mixed-wet carbonate rocks. The three-phase WAG experiments were conducted on the same composite core at near-miscible reservoir condition; experiments differ in the injection order and length of their injection cycles. First, the two-phase water/oil and gas/oil displacement experiments and first cycles of WAG were used to estimate the two-phase relative permeabilities. Then, a synchronized history-matching procedure over the full set of WAG experiments and cycles was carried out to tune Larsen ans Skauge WAG hysteresis model—namely the Land gas traping parameter, the gas reduction exponent, the residual oil reduction factor and three-phase water relative permeability. The second part of this paper deals with the multiphase upscaling of microscopic displacement properties from plug to coarse grid reservoir scale. The two-phase relative permeability curves and three-phase WAG parameters were upscaled using a sector model to preserve the displacement process and reservoir performance. The result of the coreflood calibration indicate that the two-phase displacement and first cycles of WAG yield a consistent set of two-phase relative permeabilities. Including the full set of WAG experiments allowed a robust calibration of the hysteresis model.


2021 ◽  
Author(s):  
Subodh Gupta

Abstract The objective of this paper is to present a fundamentals-based, consistent with observation, three-phase flow model that avoids the pitfalls of conventional models such as Stone-II or Baker's three-phase permeability models. While investigating the myth of residual oil saturation in SAGD with comparing model generated results against field data, Gupta et al. (2020) highlighted the difficulty in matching observed residual oil saturation in steamed reservoir with Stone-II and Baker's linear models. Though the use of Stone-II model is very popular for three-phase flow across the industry, one issue in the context of gravity drainage is how it appears to counter-intuitively limit the flow of oil when water is present near its irreducible saturation. The current work begins with describing the problem with existing combinatorial methods such as Stone-II, which in turn combine the water-oil, and gas-oil relative permeability curves to yield the oil relative permeability curve in presence of water and gas. Then starting with the fundamentals of laminar flow in capillaries and with successive analogical formulations, it develops expressions that directly yield the relative permeabilities for all three phases. In this it assumes a pore size distribution approximated by functions used earlier in the literature for deriving two-phase relative permeability curves. The outlined approach by-passes the need for having combinatorial functions such as prescribed by Stone or Baker. The model so developed is simple to use, and it avoids the unnatural phenomenon or discrepancy due to a mathematical artefact described in the context of Stone-II above. The model also explains why in the past some researchers have found relative permeability to be a function of temperature. The new model is also amenable to be determined experimentally, instead of being based on an assumed pore-size distribution. In that context it serves as a set of skeletal functions of known dependencies on various saturations, leaving constants to be determined experimentally. The novelty of the work is in development of a three-phase relative permeability model that is based on fundamentals of flow in fine channels and which explains the observed results in the context of flow in porous media better. The significance of the work includes, aside from predicting results more in line with expectations and an explanation of temperature dependent relative permeabilities of oil, a more reliable time dependent residual oleic-phase saturation in the context of gravity-based oil recovery methods.


1970 ◽  
Vol 10 (04) ◽  
pp. 381-392 ◽  
Author(s):  
John D. Huppler

Abstract Numerical simulation techniques were used to investigate the effects of common core heterogeneities upon apparent waterflood relative-permeability results. Effects of parallel and series stratification, distributed high and low permeability lenses, and vugs were considered. permeability lenses, and vugs were considered. Well distributed heterogeneities have little effect on waterflood results, but as the heterogeneities become channel-like, their influence on flooding behavior becomes pronounced. Waterflooding tests at different injection rates are suggested as the best means of assessing whether heterogeneities are important. Techniques for testing stratified or lensed cores are recommended. Introduction Since best results from waterflood tests performed on core plugs are obtained with homogeneous cores, plugs selected for testing are chosen for their plugs selected for testing are chosen for their apparent uniformity. We know, however, that uniform appearance can be misleading. For example, flushing concentrated hydrochloric acid through an apparently homogeneous core plug often produces "wormholes" in higher permeability regions. Also, we sometimes find that all core plugs from a region of interest have obvious heterogeneities, so any flooding tests must be run on nonhomogeneous core plugs. plugs. Nevertheless, relative permeabilities, as obtained routinely from core waterflood data, are calculated using the assumption that the core is a homogeneous porous medium. While it is obvious that porous medium. While it is obvious that heterogeneties mill affect these apparent relative permeabilities, there appear to be no experimental permeabilities, there appear to be no experimental results reported in the literature to indicate just how serious the problem is. Accordingly, a computer simulation study of core waterfloods was conducted to systematically examine the effects of different sizes and types of core heterogeneities on flood results. The study was performed by numerical simulation using two-dimensional, two-phase difference equation approximations to describe the immiscible water-oil displacement. For each simulation the permeability and porosity distribution of the heterogeneous core to be studied was specified; fluid flow characteristics of the system, including a single set of input relative-permeabilities curves, were stipulated The system was set in capillary pressure equilibrium at the reducible water saturation. Then a waterflood simulation was performed. From the resulting fluid production and pressure-drop data a set of production and pressure-drop data a set of relative-permeability curves was calculated using the standard computational procedure applicable to homogeneous cores. In this paper these calculated relative-permeability curves are denoted as "waterflood" curves to distinguish them from the specified input curves. The waterflood relative-permeability curves should closely match the input curves for homogeneous systems. Since the same set of input relative-permeability curves was used for all rock sections, deviations of the waterflood from the input relative-permeability curves gave an indication of the effects of heterogeneities. When the system was heterogeneous and there was good agreement between waterflood and input relative-permeability curves, then the heterogeneities did not strongly influence the flow behavior and the system responded homogeneously. MATHEMATICAL MODEL AND METHOD The waterflood simulations were carried out using two-dimensional, two-phase difference equation approximations to the incompressible-flow differential equations:* .....................(1) ....................(2) SPEJ P. 381


2021 ◽  
Vol 39 (1) ◽  
pp. 219-226
Author(s):  
Haixia Hu ◽  
Wei Luo ◽  
Qinghua Wang ◽  
Junzheng Yang ◽  
Xiaoyan Zhang ◽  
...  

The oil-water and gas-water relative permeability curves are important reference data for the dynamic analysis and numerical simulation of oil and gas reservoir exploitation. Although the petroleum industry of China and other countries have formulated reference standards for the measuring methods of relative permeability of cores, they haven’t given the definite reference values of the core length, therefore we cannot know for sure whether different core length values are required in the measurement and whether the core length has an impact on the measurement results. In view of this gap, this paper conducted a research on the relative permeability of cores with different lengths. The core samples are artificial core with similar properties as the outcrop cores of the Halfaya Oilfield (Iraq), in our experiment, the oil-water and gas-water relative permeability curves of the sample cores were measured and the results suggest that, for the oil-water relative permeability curves, as the core length grows, the iso-permeability points move to the right, and they basically stabilize when the core length is greater than 20cm; as for gas-water relative permeability curves, in case of low-permeability cores, under constant injection pressure, as the core length grows, the iso-permeability points and the two-phase co-permeation areas present an obvious tendency of moving to the left, but when the core length is greater than 20cm, such tendency is not obvious, and the high-permeability cores do not have such characteristics. These results indicate that, the unsteady-state two-phase relative permeability measurement experiments obtained accurate results at a core length of about 20cm, which provided a reference for similar experiments in subsequent research.


1984 ◽  
Vol 24 (02) ◽  
pp. 224-232 ◽  
Author(s):  
F.J. Fayers ◽  
J.D. Matthews

Abstract This paper examines normalized forms of Stone's two methods for predicting three-phase relative permeabilities. Recommendations are made on selection of the residual oil parameter, S om, in Method I. The methods are tested against selected published three-phase experimental data, using the plotting program called CPS-1 to infer improved data fitting. It is concluded that the normalized Method I with the recommended form for S om, is superior to Method II. Introduction Stone has produced two methods for estimating three-phase relative permeability from two-phase data. Both models assume a dominant wetting phase (usually water), a dominant nonwetting phase (gas), and an intermediate wetting phase (usually oil). The relative permeabilities for the water and gas are assumed to permeabilities for the water and gas are assumed to depend entirely on their individual saturations because they occupy the smallest and largest pores, respectively. The oil occupies the intermediate-size pores so that the oil relative permeability is an unknown function of water and gas saturation. For his first method, Stone proposed a formula for oil relative, permeability that was a product of oil relative permeability in the absence of gas, oil relative permeability in the absence of gas, oil relative permeability in the absence of mobile water, and some permeability in the absence of mobile water, and some variable scaling factors. He compared this formula with the experimental results of Corey et al., Dalton et al., and Saraf and Fatt. The formula is likely to be most in error at low oil relative permeability where more data are needed that show the behavior of residual oil saturation as a function of mixed gas and water saturations. In particular, the best value for the parameter S om that occurs in the model is not well resolved. In his second method, Stone developed a new formula and compared it against the data of Corey et al., Dalton et al., Saraf And Fatt, and some residual oil data from Holmgren and Morse. Stone suggested that his second method gave reasonable agreement with experiments without the need to include the parameter S om. If in the absence of residual oil data, S om = 0 is used in the first method, the second method is then better than the first method, although it tends to under predict relative permeability. Dietrich and Bondor later showed that Stone's second method did not adequately approximate the two-phase data unless the oil relative permeability at connate water saturation, k rocw, was close to unity. Dietrich and Bondor suggested a normalization that achieved consistency with the two-phase data when k rocw, was not unity. This normalization can be unsatisfactory because k roc an exceed unity in some saturation ranges if k rocw is small. More recently this objection has been overcome by the normalization of Method II introduced by Aziz and Settari. Aziz and Settari also pointed out a similar normalization problem with Stone's first method and suggested an alternative to overcome the deficiency. However, no attempt was made to investigate the accuracy of these normalized formulas with respect to experimental data. In the next section of the paper we review the principal forms of Stone's formulas, and introduce some new ideas on the use and choice of the parameter S om. Later we examine the first of Stone's assumptions that water and gas relative permeabilities are functions only of their respective saturations for a water-wet system. This involves a critical review of all the published experimental measurements. Earlier reviews did not take into account some of the available data. Last, we examine the predictions of normalized Stone's methods for oil relative permeability against the more reliable experimental results. It is concluded that the normalized Stone's Method I with the improved definition of S om is more accurate than the normalized Method II. Mathematical Definition of Three-Phase Relative Permeabilities We briefly review the principal forms of the Stone's formulas that use the two-phase relative permeabilities defined by water/oil displacement in the absence of gas, k rw = k rw (S w) and k row = k row (S w) and gas/oil displacement in the presence of connate water, k rg = k rg (S g) and k rog = k rog (S g). SPEJ p. 224


Sign in / Sign up

Export Citation Format

Share Document