scholarly journals Effects of charge temperature and fuel injection pressure on HCCI engine

2016 ◽  
Vol 55 (1) ◽  
pp. 119-125 ◽  
Author(s):  
S. Gowthaman ◽  
A.P. Sathiyagnanam

The purpose of this study is to investigate the effect of fuelinjection pressure onhomogeneous charge formation and performanceand emission characteristics of Homogeneous charge compression ignition engine. The fuel injection pressure isone of the primary parameter for improvingthe homogeneity of the mixture and governing the power output and emission characteristics of HCCI engine. In this investigation, diesel fuelwasinjected at different injection pressuresas 2bar, 3bar, 4bar and 5bar respectively throughbyport fuel injector. The experimental investigationsshow that increasing the fuel injection pressure will promote the fuel to penetrate with air and creates well pre mixedair/fuel charge.The result shows, the specific fuel consumption (SFC) of HCCI engine isslightlyhigherthan the SFC of conventional diesel engine.The HCCI engine with 3bar injection pressure operated engine has lower SFC values compared to other injection pressure operated HCCI engine.The brake thermal efficiency of HCCI engine, operated with 3barinjection pressure has maximum BTE values over the other injection pressure operated engine.From theresult, it is observed that HCCI engine has lower smoke density values compared to conventional diesel engine andfurther reducedby increasing the fuel injection pressure. The 3bar injection pressure operated HCCI engine has emitted lower smoke densitycompared to other injection pressure operated HCCI engine. The 3bar injection pressureoperated HCCIengine hasemittedmaximum oxides of nitrogen (NOx) emissions than the other injection pressure operated HCCI engine. Other exhaust emissions of carbon monoxide (CO) and hydrocarbon (HC)emissions are increased when compared toconvention diesel engine


Author(s):  
S. Gowthaman ◽  
G. Balamurugan

Homogeneous Charged Compression Ignition engine (HCCI) is a suitable replacement of conventional diesel engines as it provides higher thermal efficiency and low oxides of emission (NOx) and particulate emissions. In HCCI engine, direct controlling of ignition timing is not possible. But it can be controlled by varying the engine parameters such as fuel injection pressure, inlet air temperature and exhaust gas recirculation. In this study, HCCI engine is controlled with changing the injection pressure of the fuel and analysed for the effect of injection pressure of the fuel for emission and performance of Karanja methyl ester fuel. The experiments were conducted on HCCI engine with fuel injection pressures of 2 bar, 3 bar, 4 bar and 5 bar and the optimum fuel injection pressure is found out. The results show that, the brake thermal efficiency is increased when the injection pressure is increased due to better atomisation and fuel penetration and also resulted in low emissions (NOx, smoke) compared with diesel engine.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


Sign in / Sign up

Export Citation Format

Share Document