Wind speed characteristics and blown sand flux over a gravel surface in a compact wind tunnel

2018 ◽  
Vol 35 ◽  
pp. 39-46 ◽  
Author(s):  
Jiaqi Liu ◽  
Reiji Kimura
Keyword(s):  
2021 ◽  
Author(s):  
Lorenzo Raffaele ◽  
Nicolas Coste ◽  
Andrea Lo Giudice ◽  
Gertjan Glabeke ◽  
Jeroen van Beeck

<p>Aeolian sediment transport in desert and sandy coastal environments affects civil structures and infrastructures, such as pipelines, industrial facilities, towns, single buildings, farms, roads, and railways [1]. The wind flow interacts with surface-mounted obstacles of any kind inducing sand erosion, transport, and sedimentation around them. This can lead to detrimental effects such as the loss of functionality of the endangered structure or infrastructure, or even danger for users when structural failure is involved [2]. In order to cope with the effects above, the demand for the characterization of aeolian sand transport and the design of Sand Mitigation Measures (SMMs) has grown in the last decade and is expected to further increase in the next years [1]. The multiphase and multiscale nature of the aeolian flow ranging from the sand grain diameters to the obstacle characteristic lengths make the problem only tractable by means of physical experiments and computational simulations. On the one hand, in-situ full scale field tests are expensive, time-consuming, and subject to environmental setup conditions difficult to control. On the other hand, numerical models shall be carefully validated against physical experiments. Hence, experimental Wind-Sand Tunnel Tests (WSTTs) are often carried out.</p><p>In this study, windblown sand transport on flat ground is reproduced by means of WSTTs carried out in the wind tunnel L-1B of von Karman Institute for Fluid Dynamics. The aim of WSTTs is twofold. On one hand, they are intended to characterize the incoming sand flux in open field conditions. On the other hand, they allow to properly tune cheaper Wind-Sand Computational Simulations [3], so as to assess the performance of SMMs in full-scale. The wind tunnel setup implements a uniform 5-meter-long sand fetch as sand source. The wind speed boundary layer and sand flux saltation layer are characterized through 2D Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) techniques, respectively. Wind flow and sand transport state variables are assessed along the sand fetch by setting the wind speed equal to 1.3, 1.5, 2 times the threshold one, and by assessing the influence of a monoplane grid installed at the inlet of the wind tunnel testing sections. Results from WSTTs are critically discussed by investigating the effects induced by the sand fetch length, wind speed, and turbulence intensity on the sand transport. Finally, a Eulerian multiphase computational fluid dynamics model is tuned in order to reproduce the obtained results.</p><p><strong>References</strong></p><p>[1] Bruno L, Horvat M, Raffaele L. Windblown sand along railway infrastructures: a review of challenges and mitigation measures. J Wind Eng Ind Aerodynam 2018;177:340–65.<br>[2] Raffaele L, Bruno L. Windblown sand action on civil structures: Definition and probabilistic modelling. Eng Struct 2019;178:88-101.<br>[3] Lo Giudice A, Preziosi L. A fully Eulerian multiphase model of windblown sand coupled with morphodynamic evolution: Erosion, transport, deposition, and avalanching. Appl Math Model 2020;79:68-84.</p>


Author(s):  
Junji Maeda ◽  
Takashi Takeuchi ◽  
Eriko Tomokiyo ◽  
Yukio Tamura

To quantitatively investigate a gusty wind from the viewpoint of aerodynamic forces, a wind tunnel that can control the rise time of a step-function-like gust was devised and utilized. When the non-dimensional rise time, which is calculated using the rise time of the gusty wind, the wind speed, and the size of an object, is less than a certain value, the wind force is greater than under the corresponding steady wind. Therefore, this wind force is called the “overshoot wind force” for objects the size of orbital vehicles in an actual wind observation. The finding of the overshoot wind force requires a condition of the wind speed recording specification and depends on the object size and the gusty wind speed.


Author(s):  
Kazutoshi Matsuda ◽  
Kusuo Kato ◽  
Kouki Arise ◽  
Hajime Ishii

According to the results of conventional wind tunnel tests on rectangular cross sections with side ratios of B/D = 2–8 (B: along-wind length (m), D: cross-wind length (m)), motion-induced vortex excitation was confirmed. The generation of motion-induced vortex excitation is considered to be caused by the unification of separated vortices from the leading edge and secondary vortices at the trailing edge [1]. Spring-supported test for B/D = 1.18 was conducted in a closed circuit wind tunnel (cross section: 1.8 m high×0.9 m wide) at Kyushu Institute of Technology. Vibrations were confirmed in the neighborhoods of reduced wind speeds Vr = V/fD = 2 and Vr = 8 (V: wind speed (m/s), f: natural frequency (Hz)). Because the reduced wind speed in motion-induced vortex excitation is calculated as Vr = 1.67×B/D = 1.67×1.18 = 2.0 [1], vibrations around Vr = 2 were considered to be motion-induced vortex excitation. According to the smoke flow visualization result for B/D = 1.18 which was carried out by the authors, no secondary vortices at the trailing edge were formed, although separated vortices from the leading edge were formed at the time of oscillation at the onset wind speed of motion-induced vortex excitation, where aerodynamic vibrations considered to be motion-induced vortex excitation were confirmed. It was suggested that motion-induced vortex excitation might possibly occur in the range of low wind speeds, even in the case of side ratios where secondary vortices at trailing edge were not confirmed. In this study, smoke flow visualizations were performed for ratios of B/D = 0.5–2.0 in order to find out the relation between side ratios of rectangular cross sections and secondary vortices at trailing edge in motion-induced vortex excitation. The smoke flow visualizations around the model during oscillating condition were conducted in a small-sized wind tunnel at Kyushu Institute of Technology. Experimental Reynolds number was Re = VD/v = 1.6×103. For the forced-oscillating amplitude η, the non-dimensional double amplitudes were set as 2η/D = 0.02–0.15. Spring-supported tests were also carried out in order to obtain the response characteristics of the models.


2015 ◽  
Vol 18 (4) ◽  
pp. 179-187
Author(s):  
Anh Tien Tran ◽  
Nam Ngoc Linh Hoang

This paper presents the design and installation of measuring vibration system in wind tunnel area 1m x 1m. The theoretical analysis of the spring structure in this model help we possible to design a system for wind tunnel by yourself with suitable area, wind speed as well as survey wing model to obtain results desire. This system helps us to observe the oscillation of wing survey by eyes, but to know exactly how wing fluctuates, also the pitching angle of wing, we use ultrasonic sensors to measure the distance variation, will be presented in more detail in the text. At the same time, the article also shows how to make a simple and durable wing model with NACA 0015 airfoil - wing model will be surveyed ranged in system above. The aerodynamic phenomena affect to the vibration of the wing are also mentioned and overcome in the design of the wing. Finally we process the data after measured to see the similarities between the experiment and the theoretical dynamics of aviation.


2010 ◽  
Vol 2 (2) ◽  
Author(s):  
Agus Aribowo

This paper presents the results of investigation the separation buble which growing and burst on aerofoil NACA 0017 with effect mechanism of stall in the subsonic wind tunnel. Experiment have done on wind speed 20 m per s and 30 m per s. The data pecked from the orifice of pressure with interval 2 degree until stall position. The result was separation buble which growing on the airfoil, going to ahead of airfoil together with increasing the Reynolds number. After touching, the flow appeared to separate from the upper airfoil without reattachment.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6167
Author(s):  
Fang Feng ◽  
Guoqiang Tong ◽  
Yunfei Ma ◽  
Yan Li

In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce greenhouse gas emissions. With the advantages of simple structure, unnecessary facing the wind direction, and unique appearance, the vertical axis wind turbine (VAWT) attracts extensive attention in the field of small and medium wind turbines. The lift-type VAWT exhibits outstanding aerodynamic characteristics at a high tip speed ratio, while the starting characteristics are generally undesirable at a low wind speed; thus, how to improve the starting characteristics of the lift-type VAWT has always been an important issue. In this paper, a lift-drag combined starter (LDCS) suitable for lift-type VAWT was proposed to optimize the starting characteristics of lift-type VAWT. With semi-elliptical drag blades and lift blades equipped on the middle and rear part outside the starter, the structure is characterized by lift-drag combination, weakening the adverse effect of the starter with semi-elliptical drag blades alone on the output performance of the original lift-type VAWT and improving the characteristics of the lift-drag combined VAWT. The static characteristic is one of the important starting characteristics of the wind turbine. The rapid development of computational fluid dynamics has laid a solid material foundation for VAWT. Thus the static characteristics of the LDCS with different numbers of blades were investigated by conducting numerical simulation and wind tunnel tests. The results demonstrated that the static torque coefficient of LDCS increased significantly with the increased incoming wind speed. The average value of the static torque coefficient also increased significantly. This study can provide guidelines for the research of lift-drag combined wind turbines.


2012 ◽  
Vol 532-533 ◽  
pp. 215-219
Author(s):  
Guo Hui Zhao ◽  
Yu Li ◽  
Hua Bai

The buffeting performance of free-standing tower of JiangHai Navigation Channel Bridge, a cable-stayed bridge, under yaw wind is investigated by means of wind tunnel test of aeroelastic model. It is found that the variation of buffeting response of free-standing tower with wind yaw angle is not monotonous. The lateral buffeting response on the top of the free-standing tower reach their minimal values and maximal values at around 150°and 180°of wind yaw angle respectively and the longitudinal buffeting response attain their maximal values at around 90°of wind yaw angle. Also, at the 2/3 height of the tower the lateral buffeting response and torsional buffeting response get their minimal values at around 150°of wind yaw angle, and at around 180°achieve the maximal values. It is also seen that, the buffeting response changes with the wind speed at a conic curve approximately.


2014 ◽  
Vol 564 ◽  
pp. 216-221
Author(s):  
Nasir S. Hassen ◽  
Nor Azwadi Che Sidik ◽  
Jamaluddin Md Sheriff

Spray losses are the most important problem that is faced in the spray application process as result of spray drift to non target areas by the action of air flow.This paper investigated the spray drift for banding applicationusing even flat-fan nozzle TPEunder wind tunnel conditions.In addition, this paper also examined the effect of different spray fan angles 65°, 80° and 95° on spray drift particularly where there is need to make the nozzle operate at the optimum heights above the ground or plant level.In addition, three cross wind speeds 1, 2 and 3m/swere produced to determine the effect of wind speed on total spray drift.According to the results from this study, the nozzle anglehas a significant effect on the total spray drift. The nozzle angle 65° gave the highest drift reduction compared to the other nozzle angles. The maximum driftfor all nozzles was found at nozzle height of 60 cm. The minimum mean value of the drift was found at wind speed of 1 m/s. This study supports the use of nozzle angles of less than 95° on heights more than 0.5m and on wind speeds more than 1m/s as a means for minimizing spray drift.


2021 ◽  
Vol 71 (12) ◽  
pp. 1058-1066
Author(s):  
Se-Hun Kim ◽  
Yong-Jun Yang*
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document