Characterization of windblown sand transport in open field conditions through wind-sand tunnel testing and computational simulation

Author(s):  
Lorenzo Raffaele ◽  
Nicolas Coste ◽  
Andrea Lo Giudice ◽  
Gertjan Glabeke ◽  
Jeroen van Beeck

<p>Aeolian sediment transport in desert and sandy coastal environments affects civil structures and infrastructures, such as pipelines, industrial facilities, towns, single buildings, farms, roads, and railways [1]. The wind flow interacts with surface-mounted obstacles of any kind inducing sand erosion, transport, and sedimentation around them. This can lead to detrimental effects such as the loss of functionality of the endangered structure or infrastructure, or even danger for users when structural failure is involved [2]. In order to cope with the effects above, the demand for the characterization of aeolian sand transport and the design of Sand Mitigation Measures (SMMs) has grown in the last decade and is expected to further increase in the next years [1]. The multiphase and multiscale nature of the aeolian flow ranging from the sand grain diameters to the obstacle characteristic lengths make the problem only tractable by means of physical experiments and computational simulations. On the one hand, in-situ full scale field tests are expensive, time-consuming, and subject to environmental setup conditions difficult to control. On the other hand, numerical models shall be carefully validated against physical experiments. Hence, experimental Wind-Sand Tunnel Tests (WSTTs) are often carried out.</p><p>In this study, windblown sand transport on flat ground is reproduced by means of WSTTs carried out in the wind tunnel L-1B of von Karman Institute for Fluid Dynamics. The aim of WSTTs is twofold. On one hand, they are intended to characterize the incoming sand flux in open field conditions. On the other hand, they allow to properly tune cheaper Wind-Sand Computational Simulations [3], so as to assess the performance of SMMs in full-scale. The wind tunnel setup implements a uniform 5-meter-long sand fetch as sand source. The wind speed boundary layer and sand flux saltation layer are characterized through 2D Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) techniques, respectively. Wind flow and sand transport state variables are assessed along the sand fetch by setting the wind speed equal to 1.3, 1.5, 2 times the threshold one, and by assessing the influence of a monoplane grid installed at the inlet of the wind tunnel testing sections. Results from WSTTs are critically discussed by investigating the effects induced by the sand fetch length, wind speed, and turbulence intensity on the sand transport. Finally, a Eulerian multiphase computational fluid dynamics model is tuned in order to reproduce the obtained results.</p><p><strong>References</strong></p><p>[1] Bruno L, Horvat M, Raffaele L. Windblown sand along railway infrastructures: a review of challenges and mitigation measures. J Wind Eng Ind Aerodynam 2018;177:340–65.<br>[2] Raffaele L, Bruno L. Windblown sand action on civil structures: Definition and probabilistic modelling. Eng Struct 2019;178:88-101.<br>[3] Lo Giudice A, Preziosi L. A fully Eulerian multiphase model of windblown sand coupled with morphodynamic evolution: Erosion, transport, deposition, and avalanching. Appl Math Model 2020;79:68-84.</p>

2019 ◽  
Author(s):  
Justus G. V. van Ramshorst ◽  
Miriam Coenders-Gerrits ◽  
Bart Schilperoort ◽  
Bas J. H. van de Wiel ◽  
Jonathan G. Izett ◽  
...  

Abstract. Near-surface wind speed is typically only measured by point observations. The Actively Heated Fiber-Optic (AHFO) technique, however, has the potential to provide high-resolution distributed observations of wind speeds, allowing for better characterization of fine-scale processes. Before AHFO can be widely used, its performance needs to be tested in a range of settings. In this work, experimental results on this novel observational wind-probing technique are presented. We utilized a controlled wind-tunnel setup to assess both the accuracy and the precision of AHFO under a range of operational conditions. The technique allows for wind speed characterization with a spatial resolution of 0.3 m on a 1 s time scale. The flow in the wind tunnel was varied in a controlled manner, such that the mean wind, ranged between 1 and 17 m/s. The AHFO measurements are compared to sonic anemometer measurements and show a high overall correlation (0.85–0.98). Both the precision and accuracy of the AHFO measurements were also greater than 95 %. We conclude that the AHFO has potential to be employed as an outdoor observational technique. It allows for characterization of spatially varying fields of mean wind in complex terrain, such as in canopy flows or in sloping terrain. In the future, the technique could be combined with conventional Distributed Temperature Sensing (DTS) for turbulent heat flux estimation in micrometeorological/hydrological applications.


1982 ◽  
Vol 1 (18) ◽  
pp. 73
Author(s):  
Susumu Kubota ◽  
Kiyoshi Horikawa ◽  
Shintaro Hotta

The blown sand transport rate and the vertical and shore-normal distributions of the wind speed were measured simultaneously on a windy beach. The sand transport rate was measured with conventional total quantity-type traps and with a large trap in the form of a trench. The vertical distribution of the wind speed was measured using an ultrasonic anemometer array consisting of six meters. The distribution of wind speed at a height of 1 m in a section normal to the shoreline was measured with five ultrasonic anemometers. A logarithmic law for the vertical distribution of the wind speed was satisfied, and the wind speed in the section normal to the shoreline was almost constant. The Kawamura and Bagnold formulae were found to predict well the sand transport rate. The trench trap and conventional traps gave empirical coefficients of 1.5 and 1.0, respectively, for the sand transport rate averaged over a section normal to the shoreline. The lower value determined with the conventional traps (1.0) is attributed to their inefficiency compared with the trench trap. In order to obtain data at high shear velocities, a wind tunnel experiment was carried out. This experiment showed that both the Kawamura and Bagnold formulae were valid in the range between 60 to 300 cm/s in the wind shear velocity. The empirical coefficient in the laboratory experiments was 1.0: the difference between the field result with the trench trap and the wind tunnel experiment is attributed to the fluctuations in natural wind.


2021 ◽  
Vol 11 (23) ◽  
pp. 11349
Author(s):  
Bin Huang ◽  
Zhengnong Li ◽  
Zhitian Zhang ◽  
Zhefei Zhao ◽  
Bo Gong

Windblown sand two-phase flow characteristics become an essential factor in evaluating the windblown sand load on infrastructures and civil structures. Based on the measured wind characteristics in arid desert regions, windblown sand flow fields with three kinds of sand beds are simulated in the wind tunnel, respectively. The results indicate that the characteristic saltation height of sand particles increases with the wind speed and particle size in the windblown sand flow field. As the sand concentration increases, the wind speed decreases, and the turbulence intensity increases. The concentration, energy, and impact pressure of sand particles increase with increasing wind speed and decrease exponentially with increasing height. At the same wind speed, the concentration, energy, and impact pressure of the coarse sand, fine sand, and mixed sand increases, in turn. Moreover, the variation of kinetic energy with height is similar to that of total energy with height and the proportion of potential energy to total energy is quite small.


2020 ◽  
Vol 13 (10) ◽  
pp. 5423-5439 ◽  
Author(s):  
Justus G. V. van Ramshorst ◽  
Miriam Coenders-Gerrits ◽  
Bart Schilperoort ◽  
Bas J. H. van de Wiel ◽  
Jonathan G. Izett ◽  
...  

Abstract. Near-surface wind speed is typically only measured by point observations. The actively heated fiber-optic (AHFO) technique, however, has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes. Before AHFO can be widely used, its performance needs to be tested in a range of settings. In this work, experimental results on this novel observational wind-probing technique are presented. We utilized a controlled wind tunnel setup to assess both the accuracy and the precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature difference). The technique allows for wind speed characterization with a spatial resolution of 0.3 m on a 1 s timescale. The flow in the wind tunnel was varied in a controlled manner such that the mean wind ranged between 1 and 17 m s−1. The AHFO measurements are compared to sonic anemometer measurements and show a high coefficient of determination (0.92–0.96) for all individual angles, after correcting the AHFO measurements for the angle of attack. Both the precision and accuracy of the AHFO measurements were also greater than 95 % for all conditions. We conclude that AHFO has the potential to measure wind speed, and we present a method to help choose the heating settings of AHFO. AHFO allows for the characterization of spatially varying fields of mean wind. In the future, the technique could potentially be combined with conventional distributed temperature sensing (DTS) for sensible heat flux estimation in micrometeorological and hydrological applications.


2020 ◽  
Vol 12 (14) ◽  
pp. 5689 ◽  
Author(s):  
Shengbo Xie ◽  
Jianjun Qu ◽  
Qingjie Han ◽  
Yingjun Pang

The Lhasa–Linzhi Railway is located in the sandy area of the South Tibet valley, with high elevation and cold temperature. The Xierong section is a bridge section where blown sand hazards are severe. However, the disaster-causing mechanism of blown sand hazards in this section is currently unclear, thereby hindering targeted sand prevention and control. To address this problem, the wind dynamic environment of and causes of sand damage in this section are investigated through the field observation of the locale and a wind tunnel simulation experiment. Results show that the dominant sand-moving wind direction in the Xierong section is SSE. The wind speed, frequency of sand-moving wind, sand drift potential (DP), and maximum possible sand transport quantity (Q) in this section are relatively high during spring (March to May) and low during other seasons. The yearly resultant sand transport direction (RDD, RA) is SW. The angle between the route trend of this section and the sand transportation direction is 30°–45°, and the sand source is located in the east side of the railway. During spring, sand materials are blown up by the wind, forming blown sand flow and movement from the NE to SW direction. Increased wind speed area is formed between the top of the slope shoulder of the windward side of the bridge and the downwind direction of 3H, causing blown sand erosion. Meanwhile, weakened wind speed areas are formed within the distance of -3H at the upwind direction and from the downwind direction of the 3H to 20H of the bridge. These areas accumulate sand materials at the upwind and downwind directions of the bridge, thereby resulting in blown sand hazards. This research provides a scientific basis for the prevention and control of sand damage in the locale.


2012 ◽  
Vol 1 (33) ◽  
pp. 91 ◽  
Author(s):  
Antoine Tresca ◽  
Marie-Hélène Ruz ◽  
Stéphane Raison ◽  
Pascal Grégoire

The shoreline of Dunkirk Seaport partly consists of a macrotidal beach oriented WSW-ENE backed by a 6 km long coated dike called “digue du Braek”. Aeolian sand transport was estimated on asphalt by means of sand traps. Also, time-averaged wind speed profiles were measured using cup anemometers under various wind velocities and directions along a transversal profile on the dike and the upper beach. High rates of sand transport enabled the setup of different kinds of experimental windbreaks on asphalt, in order to test potential dune formation on this kind of substrate. Under oblique onshore winds, it was regularly observed that amounts of sand captured in the traps placed on the dike were more important than those in traps placed on the upper beach. These results were related to sand sources: windblown sand captured on the dike originated from the coastal dunes developed at the dike toe, while sand trapped on the upper beach came from the tidal zone were aeolian transport is limited by complex intertidal bar-trough topography. It also appeared from the topographic surveys carried out on the windbreaks that although their location seemed to play a major role on the amount of sand captured, fences and synthetic fabrics deployed on sandy surfaces were also able to trap windblown sand on the seaport dike.


2012 ◽  
Vol 518-523 ◽  
pp. 4766-4770
Author(s):  
Lan Gao ◽  
Yu Jun Qiu ◽  
Xue Yong Zou ◽  
Ren De Wang ◽  
Na Zhou

The characteristics of soil erosion of steppe in Inner Mongolia were studied in wind-tunnel tests. The results indicated that the soil in this region consists primarily of sand and coarse silt, with particle sizes mainly between 0.02 and 1mm, and it is defined as erodible sandy soil. The eroded sediments are mainly concentrated at heights of 0~24cm, and the extreme value of particle size is clearly in the range 100~300μm. Average particle size increased with increasing wind speed, and it decreased exponentially in the vertical direction, reflecting the characteristics of sand transport by wind. The relationship between wind erosion rate and wind speed assumes a power function with correlation coefficients greater than 0.9. A wind speed of 15m/s is a significance point above which wind erosion in this region becomes very large. Soil erosion rate decreases logarithmically as soil moisture content and vegetation coverage increase, and the 5% level of moisture content is a turning point.


10.2514/3.902 ◽  
1997 ◽  
Vol 11 ◽  
pp. 339-345
Author(s):  
James P. Sawyer ◽  
S. Rao ◽  
Mohammad A. Rob ◽  
Larry H. Mack ◽  
Sivaram Arepalli ◽  
...  
Keyword(s):  

Author(s):  
Makoto Matsui ◽  
Shingo Yoneda ◽  
Satoshi Nomura ◽  
Yoshiki Yamagiwa ◽  
Kimiya Komurasaki ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document