sand flux
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Lorenzo Raffaele ◽  
Nicolas Coste ◽  
Andrea Lo Giudice ◽  
Gertjan Glabeke ◽  
Jeroen van Beeck

<p>Aeolian sediment transport in desert and sandy coastal environments affects civil structures and infrastructures, such as pipelines, industrial facilities, towns, single buildings, farms, roads, and railways [1]. The wind flow interacts with surface-mounted obstacles of any kind inducing sand erosion, transport, and sedimentation around them. This can lead to detrimental effects such as the loss of functionality of the endangered structure or infrastructure, or even danger for users when structural failure is involved [2]. In order to cope with the effects above, the demand for the characterization of aeolian sand transport and the design of Sand Mitigation Measures (SMMs) has grown in the last decade and is expected to further increase in the next years [1]. The multiphase and multiscale nature of the aeolian flow ranging from the sand grain diameters to the obstacle characteristic lengths make the problem only tractable by means of physical experiments and computational simulations. On the one hand, in-situ full scale field tests are expensive, time-consuming, and subject to environmental setup conditions difficult to control. On the other hand, numerical models shall be carefully validated against physical experiments. Hence, experimental Wind-Sand Tunnel Tests (WSTTs) are often carried out.</p><p>In this study, windblown sand transport on flat ground is reproduced by means of WSTTs carried out in the wind tunnel L-1B of von Karman Institute for Fluid Dynamics. The aim of WSTTs is twofold. On one hand, they are intended to characterize the incoming sand flux in open field conditions. On the other hand, they allow to properly tune cheaper Wind-Sand Computational Simulations [3], so as to assess the performance of SMMs in full-scale. The wind tunnel setup implements a uniform 5-meter-long sand fetch as sand source. The wind speed boundary layer and sand flux saltation layer are characterized through 2D Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) techniques, respectively. Wind flow and sand transport state variables are assessed along the sand fetch by setting the wind speed equal to 1.3, 1.5, 2 times the threshold one, and by assessing the influence of a monoplane grid installed at the inlet of the wind tunnel testing sections. Results from WSTTs are critically discussed by investigating the effects induced by the sand fetch length, wind speed, and turbulence intensity on the sand transport. Finally, a Eulerian multiphase computational fluid dynamics model is tuned in order to reproduce the obtained results.</p><p><strong>References</strong></p><p>[1] Bruno L, Horvat M, Raffaele L. Windblown sand along railway infrastructures: a review of challenges and mitigation measures. J Wind Eng Ind Aerodynam 2018;177:340–65.<br>[2] Raffaele L, Bruno L. Windblown sand action on civil structures: Definition and probabilistic modelling. Eng Struct 2019;178:88-101.<br>[3] Lo Giudice A, Preziosi L. A fully Eulerian multiphase model of windblown sand coupled with morphodynamic evolution: Erosion, transport, deposition, and avalanching. Appl Math Model 2020;79:68-84.</p>


2021 ◽  
Vol 9 (3) ◽  
pp. 272
Author(s):  
Cyprien Bosserelle ◽  
Shari L. Gallop ◽  
Ivan D. Haigh ◽  
Charitha B. Pattiaratchi

Natural formations of rock and coral can support geologically controlled beaches, where the beach dynamics are significantly influenced by these structures. However, little is known about how alongshore variations in geological controls influence beach morphodynamics. Therefore, in this study we focus on the storm response of a beach (Yanchep in south Western Australia) that has strong alongshore variation in the level of geological control because of the heterogeneous calcarenite limestone reef. We used a modified version of XBeach to simulate the beach morphodynamics during a significant winter storm event. We find that the longshore variation in topography of the reef resulted in: (1) strong spatial difference in current distribution, including areas with strong currents jets; and (2) significant alongshore differences in sand flux, with larger fluxes in areas strongly geologically controlled by reefs. In particular, this resulted in enhanced beach erosion at the boundary of the reef where strong currents jet-exited the nearshore.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huiwen Zhang ◽  
Zhen Wu ◽  
Jing Hu ◽  
Zhiping Zhang ◽  
Bin Xiao ◽  
...  

AbstractSand flux is the key factor to determine the migration of sand dunes and the erosion to the surrounding environment. There are crescent-shaped sand dunes of various scales in the desert, and there are significant differences in spatial wind field and sand flux among them. However, due to the difficulty of monitoring, it is difficult to continuously observe the spatial wind field and sand flux around the larger crescentic dunes. On the basis of the Reynolds-Average Navier–Stokes (RA-NS) equation and the stress and sand flux model, the distribution of wind field and sand flux of a circular dune with a height of 4.2 m and a length of about 100 m during the four evolutionary periods of the evolution into a crescentic dune was simulated in this study. By comparing with the measured results, we verified that the closer to the leeward side, the more the simulated values of the velocity in wind field and sand flux were in line with the measured results. In order to further analyze the influence of the height of dune and other relevant parameters on sand flux, we simulated the influence on wind field and sand flux by changing the air viscosity and wind velocity of upper boundary. We found that the air viscosity mainly affected the amount of deposited sand on the leeward side of sand dune, while the increase of wind velocity would undoubtedly increase the sand flux of the whole sand dune. In addition, the simulation results also showed that the influence of changes in height of dune on the turbulent intensity of leeward side was very significant, and the turbulent intensity increased with the height of dune. The height changes of tall dunes gradually affected the transport of sand caused by wind flow behind the leeward side because that the rotation of the wind flow would form new vortexes at the large pores behind the leeward side, which would increase the turbulent energy in space and thus would increase the distance of migration of the lifting sand. While the low sand dunes could not form extra small vortexes at the bottom of the leeward side, so the wind velocity was small and the eddy currents behind the leeward side were more stable. The simulation results indicated that wind velocity was not the only reason for increasing the amount of sand flux, and the fluctuation of wind flow caused by turbulence could also stimulate the movement of sand particles on the ground.


2021 ◽  
Vol 50 ◽  
pp. 100681
Author(s):  
Bailiang Li ◽  
Qingqian Ning ◽  
Yunsheng Yu ◽  
Jieyu Ma ◽  
Lukas F. Meldau ◽  
...  

2021 ◽  
Vol 249 ◽  
pp. 13004
Author(s):  
Sandesh Kamath ◽  
Eric Parteli

We develop a numerical tool for particle-based simulations of Aeolian sand transport. Our model combines a Discrete-Element-Method for the sand particles with an efficient hydrodynamic description of the average turbulent horizontal wind velocity field over the granular bed, which has been developed in previous work and accounts for the two-way coupling of the granular and fluid phases. However, here we implement our model within the open source library LAMMPS for granular massively parallel simulations and incorporate a new grid coarsening scheme for the wind model. We show that our model quantitatively reproduces observed values of the steady-state (saturated) sand flux under various flow conditions. Furthermore, we model different conditions of mobile sand availability and find a strong dependence of the sand flux on this availability.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1029
Author(s):  
Jiaqi Liu ◽  
Reiji Kimura ◽  
Jing Wu

We used a compact boundary layer wind tunnel equipped with a turbulence generator and a piezoelectric blown-sand meter to investigate the effects of the surface coverage of fine gravel on wind-blown sand flux. The vertical profile of wind-blown sand over a flat sand surface showed an exponential distribution at all wind speeds, whereas the profile over gravel surfaces of 20% or greater coverage showed a non-monotonic vertical distribution. At 20% to 30% gravel coverages, a peak of wind-blown sand flux developed between 6 and 10 cm above the ground at all wind speeds because of less energy loss due to grain-bed collisions at that level. To analyze the erosional state of wind-blown sand, we used the Wu–Ling index (λ) of the mass-flux density of sand-bearing wind. Values of λ for all gravel coverages were greater than 1 at all wind speeds, indicating an unsaturated (erosional) state. Moreover, we found that the wind-blown sand flux at 4 cm height accounted for about 20% of the total flux regardless of wind speed and gravel coverage. This finding can simplify future estimations of total near-surface wind-blown sand flux based on field observations because such measurements can be taken at just one height.


Geology ◽  
2020 ◽  
Vol 48 (4) ◽  
pp. 343-347 ◽  
Author(s):  
C. Gadal ◽  
C. Narteau ◽  
S. Courrech du Pont ◽  
O. Rozier ◽  
P. Claudin

Abstract Dune fields are commonly associated with periodic patterns that are among the most recognizable landscapes on Earth and other planetary bodies. However, in zones of limited sediment supply, where periodic dunes elongate and align in the direction of the resultant sand flux, there has been no attempt to explain the emergence of such a regular pattern. Here, we show, by means of numerical simulations, that the elongation growth mechanism does not produce a pattern with a specific wavelength. Periodic elongating dunes appear to be a juxtaposition of individual structures, the arrangement of which is due to regular landforms at the border of the field acting as boundary conditions. This includes, among others, dune patterns resulting from bed instability, or the crestline reorganization induced by dune migration. The wavelength selection in fields of elongating dunes therefore reflects the interdependence of dune patterns over the course of their evolution.


2019 ◽  
Vol 488 (1) ◽  
pp. 1103-1106
Author(s):  
G. I. Gorchakov ◽  
D. V. Buntov ◽  
A. V. Karpov ◽  
V. M. Kopeikin ◽  
S. F. Mirsaitov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document