Controlled drainage and subirrigation – A water management option to reduce non-point source pollution from agricultural land

2014 ◽  
Vol 198 ◽  
pp. 74-82 ◽  
Author(s):  
Ingrid Wesström ◽  
Abraham Joel ◽  
Ingmar Messing
2019 ◽  
Vol 11 (8) ◽  
pp. 2246 ◽  
Author(s):  
Xiaowen Ding ◽  
Lin Liu

With the continuous enhancement of point source pollution control, non-point source (NPS) pollution has become an important factor in the deterioration of surface water quality. Meanwhile, due to the soaring global population, long-term effects of anthropogenic factors on non-point source pollution in large river basins have increasingly attracted worldwide attention. The Yangtze river is the largest river basin of China, and protecting its ecological environment has great significance on protecting the lifeline of the entire Yangtze river. In this study, the improved output coefficient and nutrient losses empirical model were used to conduct space–time simulations of non-point source pollution in the upper reaches of the Yangtze river (URYR) based on GIS during 1960–2003. This method reveals the anthropogenic effects of non-point source pollution in the upper reaches of the Yangtze river. The results indicate that the impacts of anthropogenic factors on dissolved pollutants increased significantly, while those on sediment and adsorbed pollutants increased first and then decreased during the simulation year. Agricultural land use and atmospheric deposition, as well as rural life, were the main sources of dissolved pollutants. In addition, dry land and paddy fields were the major sources of sediment and adsorbed pollutants. For the load intensities, the long-term effects of anthropogenic factors on dissolved pollutants increased rapidly, and those on the load intensity of sediment and adsorbed pollutants increased first and then decreased. Therefore, the study would propose some corresponding environmental management measures to strengthen environmental protection and non-point source pollution control in the upper reaches of the Yangtze river.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


Sign in / Sign up

Export Citation Format

Share Document