Wheat rhizosphere fungal community is affected by tillage and plant growth

2021 ◽  
Vol 317 ◽  
pp. 107475
Author(s):  
Yüze Li ◽  
Ziting Wang ◽  
Tong Li ◽  
Deqiang Zhao ◽  
Juan Han ◽  
...  
Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 758 ◽  
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Xiaoshuang Song ◽  
Ruiqing Song

Trichoderma spp. are proposed as major plant growth-promoting fungi that widely exist in the natural environment. These strains have the abilities of rapid growth and reproduction and efficient transformation of soil nutrients. Moreover, they can change the plant rhizosphere soil environment and promote plant growth. Pinus sylvestris var. mongolica has the characteristics of strong drought resistance and fast growth and plays an important role in ecological construction and environmental restoration. The effects on the growth of annual seedlings, root structure, rhizosphere soil nutrients, enzyme activity, and fungal community structure of P. sylvestris var. mongolica were studied after inoculation with Trichoderma harzianum E15 and Trichoderma virens ZT05, separately. The results showed that after inoculation with T. harzianum E15 and T. virens ZT05, seedling biomass, root structure index, soil nutrients, and soil enzyme activity were significantly increased compared with the control (p < 0.05). There were significant differences in the effects of T. harzianum E15 and T. virens ZT05 inoculation on the growth and rhizosphere soil nutrient of P. sylvestris var. mongolica (p < 0.05). For the E15 treatment, the seedling height, ground diameter, and total biomass of seedlings were higher than that those of the ZT05 treatment, and the rhizosphere soil nutrient content and enzyme activity of the ZT05 treatment were higher than that of the E15 treatment. The results of alpha and beta diversity analyses showed that the fungi community structure of rhizosphere soil was significantly different (p < 0.05) among the three treatments (inoculated with T. harzianum E15, T. virens ZT05, and not inoculated with Trichoderma). Overall, Trichoderma inoculation was correlated with the change of rhizosphere soil nutrient content.


2020 ◽  
Vol 438 ◽  
pp. 109321
Author(s):  
Maria M. Martignoni ◽  
Jimmy Garnier ◽  
Miranda M. Hart ◽  
Rebecca C. Tyson

2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Haixia Ding ◽  
Ben Niu ◽  
Haiyan Fan ◽  
Yan Li ◽  
Qi Wang

Bacillus cereus 905 is a plant growth-promoting rhizobacterium, isolated from wheat rhizosphere. The draft genome sequence of this strain is 5.39 Mb and harbors 5,412 coding sequences.


Sign in / Sign up

Export Citation Format

Share Document