Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants

Author(s):  
M. K. Abbasi ◽  
S. Sharif ◽  
M. Kazmi ◽  
T. Sultan ◽  
M. Aslam
2019 ◽  
Vol 47 (3) ◽  
Author(s):  
Vladimir Ion ROTARU ◽  
Luxita RISNOVEANU

The growth of legume plants is usually improved by the rhizobacteria inoculation under low phosphorus (P) and alleviation of P nutrition plays important role in plant drought stress response. The aim of this study was to assess the comparative efficacy of two plant growth promoting rhizobacteria namely Burkholderia cepacia B36 and Enterobacter radicincitans D5/23T combined with two sources of phosphates in soybean (Glycine max L.) under low water supply. Plants were grown under P soluble versus insoluble P fertilization for comparing the effects of soybean inoculation on growth, uptake and use efficiency of phosphorus under moderate drought stress. At the beginning of flowering, half of plants was subjected to low water supply (35% water holding capacity, WHC) for 12 days while control plants were well watered - 70% WHC. The plants were harvested at the end of drought and physiological traits and P contents were analyzed. The inoculation treatments showed better plant growth and nutrient uptake when compared to uninoculated control. The application of the Burkholderia cepacia was more efficiently in terms plant growth than E. radicincitans especially under insoluble phosphates. Phosphorus concentrations of shoots and roots increased with both bacterial strains. The bacterial inoculation has much better stimulatory effect on nutrient uptake by soybean fertilized with insoluble phosphates. Study findings indicate that the combined application of PGPR (Burkholderia cepacia B36) and P amendments has the potential to improve P nutrition and growth of soybean cultivated on P-deficient soil under well-watered as well as moderate drought condition.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2021 ◽  
Vol 13 (15) ◽  
pp. 8535
Author(s):  
Muhammad Ijaz ◽  
Abdul Sattar ◽  
Ahmad Sher ◽  
Sami Ul-Allah ◽  
Muhammad Zeeshan Mansha ◽  
...  

Sunflower (Helianthus annuus L.), a member of the Asteraceae, is one of the major oilseed crops around the world. Charcoal rot caused by Macrophomina phaseolina (Tassi) Goid is the most damaging disease of sunflowers globally. Fungicides are mostly used to control charcoal rot; however, these cause environmental pollution and pose adverse effects on the ecosystem. Therefore, ecofriendly management options are inevitable for the management of charcoal rot disease. Plant mineral nutrition, the use of plant growth-promoting rhizobacteria and biochar have recently been manipulated for the management of different plant diseases. However, the interactive effects of all these treatments have rarely been tested on charcoal rot suppression in sunflowers. This study assessed the influence of sulfur (0 and 2.25 mg/kg) combined with farmyard manure biochar (2%), NPK (20:20:20 mg/kg) and three different plant growth-promoting rhizobacteria (PGPR) strains on the charcoal rot suppression growth, yield, biochemistry and physiology of sunflower. The PGPR strains included in the study were Bacillus sp. strain MR-1/2 (regarded as PGPR1), Achromobacter sp. strain FB-14 (regarded as PGPR2) and Planomicrobium sp. strain MSSA-10 (regarded as PGPR3). The charcoal rot infestation was induced by inoculating the soil with M. phaseolina, and the impacts of the different treatments were studied on the disease infestation, growth, yield, biochemistry and physiology of sunflowers under 0 and 2.25-mg/kg S application. The results revealed that farmyard manure biochar and Planomicrobium sp. strain MSSA-10 in combination with 2.25-mg/kg S proved effective for the management of charcoal rot disease through regulating the antioxidant enzymes’ activities and strengthening the immune system of sunflower plants. The studied health markers (total chlorophyll content and carotenoids) and stress markers (total protein content, catalase and peroxidase) were significantly altered by the applied treatments under 0 and 2.25-mg/kg S applications. The findings of the experiment indicated that both farmyard manure biochar and Planomicrobium sp. strain MSSA-10, combined with 2.25-mg/kg S, could be used to enhance the crop yield and manage charcoal rot disease in sunflowers. Farmyard manure biochar and Planomicrobium sp. strain MSSA-10 are an easy-to-apply, cost-effective, ecofriendly and sustainable option for the management of charcoal rot disease in sunflowers.


Author(s):  
A.R. Resmi ◽  
B. Lovely ◽  
A. Jayapal ◽  
G. Suja ◽  
N. Chitra

Background: Amaranthus is the most popular and commercially cultivated leafy vegetable in the Southern part of India, especially Tamil Nadu and Kerala which is susceptible to a number of diseases. Among the different diseases affecting amaranth, foliar blight caused by Rhizoctonia solani Kuhn, is considered as the most serious disease in Kerala. Methods: A field experiment was taken up at Onattukara Regional Agricultural Research Station (O.R.A.R.S), Kayamkulam, Alappuzha, Kerala during December 2019 to February 2020 to assess the influence of dust and liquid formulations of Plant Growth Promoting Rhizobacteria (PGPR) mix I on growth, yield and disease incidence (Rhizoctonia leaf blight) in amaranthus. Result: The results of the study reveal that maximum number of leaves, number of branches per plant and yield were produced by the plants that were subjected to seedling root dip with 5% talc formulation followed by drenching with 5% talc solution at 30 DAT and 45 DAT. Regardless of talc or liquid formulation of PGPR mix I (2%) seedling dip followed by drenching at 15, 30 and 45 DAT provided the least disease incidence and disease severity in amaranthus at Onattukara condition. Hence use of PGPR mix I is a prerequisite for effective growth, yield and management of leaf blight of amaranthus at Onattukara.


Sign in / Sign up

Export Citation Format

Share Document