Testing the “source–sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max

2004 ◽  
Vol 122 (1-2) ◽  
pp. 85-94 ◽  
Author(s):  
Elizabeth A Ainsworth ◽  
Alistair Rogers ◽  
Randall Nelson ◽  
Stephen P Long
Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1197
Author(s):  
Siyeon Byeon ◽  
Kunhyo Kim ◽  
Jeonghyun Hong ◽  
Seohyun Kim ◽  
Sukyung Kim ◽  
...  

(1) Background: Down-regulation of photosynthesis has been commonly reported in elevated CO2 (eCO2) experiments and is accompanied by a reduction of leaf nitrogen (N) concentration. Decreased N concentrations in plant tissues under eCO2 can be attributed to an increase in nonstructural carbohydrate (NSC) and are possibly related to N availability. (2) Methods: To examine whether the reduction of leaf N concentration under eCO2 is related to N availability, we investigated understory Fraxinus rhynchophylla seedlings grown under three different CO2 conditions (ambient, 400 ppm [aCO2]; ambient × 1.4, 560 ppm [eCO21.4]; and ambient × 1.8, 720 ppm [eCO21.8]) and three different N concentrations for 2 years. (3) Results: Leaf and stem biomass did not change under eCO2 conditions, whereas leaf production and stem and branch biomass were increased by N fertilization. Unlike biomass, the light-saturated photosynthetic rate and photosynthetic N-use efficiency (PNUE) increased under eCO2 conditions. However, leaf N, Rubisco, and chlorophyll decreased under eCO2 conditions in both N-fertilized and unfertilized treatments. Contrary to the previous studies, leaf NSC decreased under eCO2 conditions. Unlike leaf N concentration, N concentration of the stem under eCO2 conditions was higher than that under ambient CO2 (4). Conclusions: Leaf N concentration was not reduced by NSC under eCO2 conditions in the understory, and unlike other organs, leaf N concentration might be reduced due to increased PNUE.


2019 ◽  
Vol 70 (20) ◽  
pp. 5773-5785 ◽  
Author(s):  
Denis Fabre ◽  
Xinyou Yin ◽  
Michael Dingkuhn ◽  
Anne Clément-Vidal ◽  
Sandrine Roques ◽  
...  

Triose phosphate utilization is involved in the regulation of photosynthesis under elevated CO2 conditions, and it should be considered in photosynthesis studies under severe source–sink imbalance at elevated CO2.


1999 ◽  
Vol 26 (1) ◽  
pp. 37 ◽  
Author(s):  
John S. Roden ◽  
John J. G. Egerton ◽  
Marilyn C. Ball

Snow gum (Eucalyptus pauciflora Sieb. ex Spreng.) seedlings were grown from autumn through spring in open top chambers located in a pasture naturally subject to freezing temperatures in either ambient or elevated (350 µL L-1 above ambient) CO2 concentrations. Sustained reduction in quantum efficiency, as measured by chlorophyll fluorescence (Fv/Fm), in over-wintering leaves may be related to seasonal down-regulation of photosynthesis, combined with cumulative effects of freeze- induced damage to the photosynthetic apparatus, with the effect being greater in leaves grown under elevated [CO2]. Down-regulation of photosynthesis apparently occurred in response to seasonal limitations to growth which were not overcome by elevation of [CO2] despite temperatures being favorable for photosynthesis during most of the photoperiod. Elevated [CO2] had no effect on growth of over-wintering seedlings, but enhanced growth in spring when minimum temperatures rose consistently above freezing. As there were no effects of elevated [CO2] on allocation, the stimulation of growth in spring was attributable to increase in net assimilation rates. Thus seasonal differences in photoinhibition were consistent with seasonal differences in the capacity for growth, with plants grown under elevated [CO2] having to dissipate more excess excitation energy over-winter.


2019 ◽  
Vol 71 (2) ◽  
pp. 707-718 ◽  
Author(s):  
Hyungmin Rho ◽  
Sharon Lafferty Doty ◽  
Soo-Hyung Kim

Abstract The positive effects of high atmospheric CO2 concentrations [CO2] decrease over time in most C3 plants because of down-regulation of photosynthesis. A notable exception to this trend is plants hosting N-fixing bacteria. The decrease in photosynthetic capacity associated with an extended exposure to high [CO2] was therefore studied in non-nodulating rice that can establish endophytic interactions. Rice plants were inoculated with diazotrophic endophytes isolated from the Salicaceae and CO2 response curves of photosynthesis were determined in the absence or presence of endophytes at the panicle initiation stage. Non-inoculated plants grown under elevated [CO2] showed a down-regulation of photosynthesis compared to those grown under ambient [CO2]. In contrast, the endophyte-inoculated plants did not show a decrease in photosynthesis associated with high [CO2], and they exhibited higher photosynthetic electron transport and mesophyll conductance rates than non-inoculated plants under high [CO2]. The endophyte-dependent alleviation of decreases in photosynthesis under high [CO2] led to an increase in water-use efficiency. These effects were most pronounced when the N supply was limited. The results suggest that inoculation with N-fixing endophytes could be an effective means of improving plant growth under high [CO2] by alleviating N limitations.


2002 ◽  
Vol 8 (8) ◽  
pp. 695-709 ◽  
Author(s):  
Elizabeth A. Ainsworth ◽  
Phillip A. Davey ◽  
Carl J. Bernacchi ◽  
Orla C. Dermody ◽  
Emily A. Heaton ◽  
...  

2015 ◽  
Vol 38 (12) ◽  
pp. 2589-2602 ◽  
Author(s):  
Álvaro Sanz-sáez ◽  
Katy D. Heath ◽  
Patricia V. Burke ◽  
Elizabeth A. Ainsworth
Keyword(s):  

2002 ◽  
Vol 29 (7) ◽  
pp. 805 ◽  
Author(s):  
María Dolores Fernández ◽  
Wilmer Tezara ◽  
Elizabeth Rengifo ◽  
Ana Herrera

We evaluated the effects of an elevated [CO2] on photosynthesis and growth of cassava plants grown in open-top chambers with an adequate supply of water and N and a sufficient rooting volume. Cassava plants (Manihot esculenta Crantz. cv. Motilona) showed higher photosynthetic rates (Pn) when grown and measured at elevated [CO2] (680 µmol mol-1) than when grown and measured at ambient [CO2] (480 µmol mol-1). No downregulation of photosynthesis due to elevated [CO2] was found, since carboxylation efficiency increased after 220 d in spite of a decrease in leaf soluble protein, Rubisco, and leaf N content. Soluble sugar and starch contents decreased with time under elevated [CO2], the decrease in starch content coinciding with the beginning of the increase in root mass. Canopy Pn by leaf area decreased with time under elevated [CO2] but, when canopy Pn was expressed by ground area, higher and constant rates were observed, suggesting a higher productivity in plants grown at elevated [CO2]. The absence of differences between growth [CO2] in root : shoot ratio observed suggests that elevated [CO2], while causing increases in the shoot as well as the root, did not affect the pattern of biomass allocation. Acclimation responses of gas exchange parameters changed during the experiment. The absence of downregulation of photosynthesis was associated with a decrease in leaf sugar and starch contents of plants grown at elevated [CO2], which suggests a favourable source/sink relationship.


Sign in / Sign up

Export Citation Format

Share Document