Down-regulation of photosynthesis and its relationship with changes in leaf N allocation and N availability after long-term exposure to elevated CO2 concentration

2021 ◽  
pp. 153489
Author(s):  
Siyeon Byeon ◽  
Wookyung Song ◽  
Minjee Park ◽  
Sukyung Kim ◽  
Seohyun Kim ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1197
Author(s):  
Siyeon Byeon ◽  
Kunhyo Kim ◽  
Jeonghyun Hong ◽  
Seohyun Kim ◽  
Sukyung Kim ◽  
...  

(1) Background: Down-regulation of photosynthesis has been commonly reported in elevated CO2 (eCO2) experiments and is accompanied by a reduction of leaf nitrogen (N) concentration. Decreased N concentrations in plant tissues under eCO2 can be attributed to an increase in nonstructural carbohydrate (NSC) and are possibly related to N availability. (2) Methods: To examine whether the reduction of leaf N concentration under eCO2 is related to N availability, we investigated understory Fraxinus rhynchophylla seedlings grown under three different CO2 conditions (ambient, 400 ppm [aCO2]; ambient × 1.4, 560 ppm [eCO21.4]; and ambient × 1.8, 720 ppm [eCO21.8]) and three different N concentrations for 2 years. (3) Results: Leaf and stem biomass did not change under eCO2 conditions, whereas leaf production and stem and branch biomass were increased by N fertilization. Unlike biomass, the light-saturated photosynthetic rate and photosynthetic N-use efficiency (PNUE) increased under eCO2 conditions. However, leaf N, Rubisco, and chlorophyll decreased under eCO2 conditions in both N-fertilized and unfertilized treatments. Contrary to the previous studies, leaf NSC decreased under eCO2 conditions. Unlike leaf N concentration, N concentration of the stem under eCO2 conditions was higher than that under ambient CO2 (4). Conclusions: Leaf N concentration was not reduced by NSC under eCO2 conditions in the understory, and unlike other organs, leaf N concentration might be reduced due to increased PNUE.


2014 ◽  
Vol 41 (11) ◽  
pp. 1138 ◽  
Author(s):  
Gorka Erice ◽  
Alvaro Sanz-Sáez ◽  
Amadeo Urdiain ◽  
Jose L. Araus ◽  
Juan José Irigoyen ◽  
...  

Despite its relevance, few studies to date have analysed the role of harvest index (HI) in the responsiveness of wheat (Triticum spp.) to elevated CO2 concentration ([CO2]) under limited water availability. The goal of the present work was to characterise the role of HI in the physiological responsiveness of durum wheat (Triticum durum Desf.) exposed to elevated [CO2] and terminal (i.e. during grain filling) water stress. For this purpose, the performance of wheat plants with high versus low HI (cvv. Sula and Blanqueta, respectively) was assessed under elevated [CO2] (700 μmol mol–1 vs 400 μmol mol–1 CO2) and terminal water stress (imposed after ear emergence) in CO2 greenhouses. Leaf carbohydrate build-up combined with limitations in CO2 diffusion (in droughted plants) limited the responsiveness to elevated [CO2] in both cultivars. Elevated [CO2] only increased wheat yield in fully watered Sula plants, where its larger HI prevented an elevated accumulation of total nonstructural carbohydrates. It is likely that the putative shortened grain filling period in plants exposed to water stress also limited the responsiveness of plants to elevated [CO2]. In summary, our study showed that even under optimal water availability conditions, only plants with a high HI responded to elevated [CO2] with increased plant growth, and that terminal drought constrained the responsiveness of wheat plants to elevated [CO2].


1998 ◽  
Vol 152 (4-5) ◽  
pp. 413-419 ◽  
Author(s):  
Vladimír Špunda ◽  
Jiří Kalina ◽  
Martin Čajánek ◽  
Hana Pavlíčková ◽  
Michal V. Marek

2001 ◽  
Vol 149 (2) ◽  
pp. 247-264 ◽  
Author(s):  
B. E. Medlyn ◽  
C. V. M. Barton ◽  
M. S. J. Broadmeadow ◽  
R. Ceulemans ◽  
P. De Angelis ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 383
Author(s):  
Zhan Chen ◽  
Siyuan Ye ◽  
Jixin Cao ◽  
He Shang

There are very few studies about the effects of relatively higher CO2 concentration (e.g., 1000 μmol·mol−1) or plus N fertilization on woody plants. In this study, Schima superba seedings were exposed to ambient or eCO2 (550, 750, and 1000 μmol·mol−1) and N fertilization (0 and 10 g·m−2·yr−1, hereafter: low N, high N, respectively) for one growth season to explore the potential responses in a subtropical site with low soil N availability. N fertilization strongly increased leaf mass-based N by 118.38%, 116.68%, 106.78%, and 138.95%, respectively, in different CO2 treatments and decreased starch, with a half reduction in leaf C:N ratio. Leaf N was significantly decreased by eCO2 in both low N and high N treatments, and N fertilization stimulated the decrease of leaf N and mitigated the increase of leaf C:N by eCO2. In low N treatments, photosynthetic rate (Pn) was maximized at 733 μmol·mol−1 CO2 in August and September, while, in high N treatments, Pn was continuously increased with elevation of CO2. N fertilization significantly increased plant biomass especially at highly elevated CO2, although no response of biomass to eCO2 alone. These findings indicated that N fertilization would modify the response of S. superba to eCO2.


Sign in / Sign up

Export Citation Format

Share Document