scholarly journals Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning

2019 ◽  
Vol 264 ◽  
pp. 1-15 ◽  
Author(s):  
C. Folberth ◽  
A. Baklanov ◽  
J. Balkovič ◽  
R. Skalský ◽  
N. Khabarov ◽  
...  
2021 ◽  
Vol 197 ◽  
pp. 117089
Author(s):  
Katie White ◽  
Sarah Dickson-Anderson ◽  
Anna Majury ◽  
Kevin McDermott ◽  
Paul Hynds ◽  
...  

Author(s):  
Melika Sajadian ◽  
Ana Teixeira ◽  
Faraz S. Tehrani ◽  
Mathias Lemmens

Abstract. Built environments developed on compressible soils are susceptible to land deformation. The spatio-temporal monitoring and analysis of these deformations are necessary for sustainable development of cities. Techniques such as Interferometric Synthetic Aperture Radar (InSAR) or predictions based on soil mechanics using in situ characterization, such as Cone Penetration Testing (CPT) can be used for assessing such land deformations. Despite the combined advantages of these two methods, the relationship between them has not yet been investigated. Therefore, the major objective of this study is to reconcile InSAR measurements and CPT measurements using machine learning techniques in an attempt to better predict land deformation.


Author(s):  
Lingxiao Wang ◽  
Tian Xu ◽  
Till Stoecker ◽  
Horst Stoecker ◽  
Yin Jiang ◽  
...  

2021 ◽  
pp. 289-301
Author(s):  
B. Martín ◽  
J. González–Arias ◽  
J. A. Vicente–Vírseda

Our aim was to identify an optimal analytical approach for accurately predicting complex spatio–temporal patterns in animal species distribution. We compared the performance of eight modelling techniques (generalized additive models, regression trees, bagged CART, k–nearest neighbors, stochastic gradient boosting, support vector machines, neural network, and random forest –enhanced form of bootstrap. We also performed extreme gradient boosting –an enhanced form of radiant boosting– to predict spatial patterns in abundance of migrating Balearic shearwaters based on data gathered within eBird. Derived from open–source datasets, proxies of frontal systems and ocean productivity domains that have been previously used to characterize the oceanographic habitats of seabirds were quantified, and then used as predictors in the models. The random forest model showed the best performance according to the parameters assessed (RMSE value and R2). The correlation between observed and predicted abundance with this model was also considerably high. This study shows that the combination of machine learning techniques and massive data provided by open data sources is a useful approach for identifying the long–term spatial–temporal distribution of species at regional spatial scales.


Author(s):  
Ana Clara Gomes da Silva ◽  
Clarisse Lins de Lima ◽  
Cecilia Cordeiro da Silva ◽  
Giselle Machado Magalhães Moreno ◽  
Eduardo Luiz Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document