scholarly journals Sensitivity analysis of a source partitioning method for H2O and CO2 fluxes based on high frequency eddy covariance data: Findings from field data and large eddy simulations

2019 ◽  
Vol 265 ◽  
pp. 152-170 ◽  
Author(s):  
A. Klosterhalfen ◽  
A.F. Moene ◽  
M. Schmidt ◽  
T.M. Scanlon ◽  
H. Vereecken ◽  
...  
2021 ◽  
Author(s):  
Luise Wanner ◽  
Sreenath Paleri ◽  
Johannes Speidel ◽  
Ankur Desai ◽  
Matthias Sühring ◽  
...  

<p>Large-eddy simulations are useful tools to study transport processes by mesoscale structures in the atmospheric boundary layer, since in contrast to single-tower eddy covariance measurements, they provide not only temporally but also spatially highly resolved information. Therefore, they are well suited to study the energy balance closure problem, for which the mesoscale transport of latent and sensible heat, triggered by heterogeneous ecosystems, is suspected to be a major cause. However, this requires simulations that are as realistic as possible and thus allow a comparison of real measurements in the field and virtual measurements in the simulation.<br>During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD) experiment in the summer of 2019, a heterogeneous 10x10 square km domain was intensively sampled across scales. This data offers a unique possibility to set up large-eddy simulations with realistic surface heterogeneity. We use PALM to simulate two days and an area of 40 by 40 square kilometers incorporating the CHEESEHEAD site. The large scale atmospheric forcings to inform the boundary conditions are determined from the NCEP HRRR product. As the lower boundary condition, we use a soil and land-surface model coupled with a plant-canopy model, which we adapt to the CHEESEHEAD area based on ground-based and airborne measurements of plant physiological data.<br>In this study, we investigate how well the simulations match with real measurements by comparing simulated profiles and virtual tower measurements with field measurements from radiosonde ascents, lidar measurements of three-dimensional wind and water vapor, eddy-covariance measurements from the 400 meter tower in the center of the study domain, as well as from typical eddy-covariance stations distributed through the study area. This way, we investigate how realistic the simulations actually are and to what extent the knowledge gained from them concerning the energy balance closure problem can be transferred to field measurements.</p>


2019 ◽  
Vol 16 (6) ◽  
pp. 1111-1132 ◽  
Author(s):  
Anne Klosterhalfen ◽  
Alexander Graf ◽  
Nicolas Brüggemann ◽  
Clemens Drüe ◽  
Odilia Esser ◽  
...  

Abstract. For an assessment of the roles of soil and vegetation in the climate system, a further understanding of the flux components of H2O and CO2 (e.g., transpiration, soil respiration) and their interaction with physical conditions and physiological functioning of plants and ecosystems is necessary. To obtain magnitudes of these flux components, we applied source partitioning approaches after Scanlon and Kustas (2010; SK10) and after Thomas et al. (2008; TH08) to high-frequency eddy covariance measurements of 12 study sites covering different ecosystems (croplands, grasslands, and forests) in different climatic regions. Both partitioning methods are based on higher-order statistics of the H2O and CO2 fluctuations, but proceed differently to estimate transpiration, evaporation, net primary production, and soil respiration. We compared and evaluated the partitioning results obtained with SK10 and TH08, including slight modifications of both approaches. Further, we analyzed the interrelations among the performance of the partitioning methods, turbulence characteristics, and site characteristics (such as plant cover type, canopy height, canopy density, and measurement height). We were able to identify characteristics of a data set that are prerequisites for adequate performance of the partitioning methods. SK10 had the tendency to overestimate and TH08 to underestimate soil flux components. For both methods, the partitioning of CO2 fluxes was less robust than for H2O fluxes. Results derived with SK10 showed relatively large dependencies on estimated water use efficiency (WUE) at the leaf level, which is a required input. Measurements of outgoing longwave radiation used for the estimation of foliage temperature (used in WUE) could slightly increase the quality of the partitioning results. A modification of the TH08 approach, by applying a cluster analysis for the conditional sampling of respiration–evaporation events, performed satisfactorily, but did not result in significant advantages compared to the original method versions developed by Thomas et al. (2008). The performance of each partitioning approach was dependent on meteorological conditions, plant development, canopy height, canopy density, and measurement height. Foremost, the performance of SK10 correlated negatively with the ratio between measurement height and canopy height. The performance of TH08 was more dependent on canopy height and leaf area index. In general, all site characteristics that increase dissimilarities between scalars appeared to enhance partitioning performance for SK10 and TH08.


2020 ◽  
pp. 1-12
Author(s):  
Adam L. Comer ◽  
Cheng Huang ◽  
Swanand Sardeshmukh ◽  
Brent A. Rankin ◽  
Matthew E. Harvazinski ◽  
...  

2020 ◽  
Author(s):  
Luise Wanner ◽  
Frederik De Roo ◽  
Matthias Mauder

<p>The eddy-covariance method generally underestimates sensible and latent heat fluxes, resulting in an energy-balance gap from 10 % to even 30 % across sites worldwide. In contrast to single-tower eddy-covariance measurements, large-eddy simulations (LES) provide information on a 3D array of grid points and can capture atmospheric processes such as secondary circulations on all relevant scales, which makes them a powerful tool to investigate this problem. In order to compare LES results to field measurements at 20 m height from the CHEESEHEAD (Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors) campaign, a LES-setup that provides comparability to the measurements at these low levels is necessary. However, former LES studies have shown that the energy balance is almost closed near the surface, which does not reflect the energy-balance gap in measurements. One possible reason might be the common use of prescribed surface fluxes that cannot adapt to changes in surface temperature and moisture, which would allow for the self-reinforcement of secondary circulations. Therefore, we set up an idealized study, in which we compare the performance of the land-surface and plant-canopy models implemented in PALM to the use of prescribed surface fluxes above homogeneous forest and grassland ecosystems under different atmospheric conditions with respect to realistic energy-balance closure behavior. Furthermore, we evaluate the performance of a dynamic subgrid-scale model, as well as an alternative to the Monin-Obukhov similarity theory (Banerjee et al. 2015, Q. J. R. Met. Soc.).</p>


2020 ◽  
Author(s):  
Aymeric Spiga ◽  
Naomi Murdoch ◽  
Don Banfield ◽  
Ralph Lorenz ◽  
Claire Newman ◽  
...  

<p>The InSight instrumentation for atmospheric science combines high frequency, high accuracy and continuity. This makes InSight a mission particularly suitable for studies of the variability in the Planetary Boundary Layer (PBL) of Mars -- all the more since this topic is of direct interest for quake detectability given that turbulence is the main contributor to atmosphere-induced seismic signal. For the strong daytime buoyancy-driven PBL convection, InSight significantly extends the statistics of dust-devil-like convective vortices and turbulent wind gustiness, both of which are of strong interest for aeolian science. For the moderate nighttime shear-induced PBL convection, InSight enables to explore phenomena and variability left unexplored by previous in-situ measurements on Mars. In both daytime and nighttime environments, how the gravity waves and infrasound signals discovered by InSight are being guided within the PBL is also a central topic to InSight's atmospheric investigations, with the tantalizing possibility to identify possible sources for those phenomena. InSight has been operating at the surface of Mars since 18 months, thus the seasonal evolution of the many phenomena occurring in the PBL will be an emphasis of this report. Comparisons with turbulence-resolving modeling such as Large-Eddy Simulations will be also discussed.</p>


AIAA Journal ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 2974-2991 ◽  
Author(s):  
Miguel R. Visbal ◽  
Stuart I. Benton

Author(s):  
Adam L. Comer ◽  
Cheng Huang ◽  
Karthikeyan Duraisamy ◽  
Swanand V. Sardeshmukh ◽  
Brent A. Rankin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document