Large eddy simulations of multiple transcritical coaxial flames submitted to a high-frequency transverse acoustic modulation

2015 ◽  
Vol 35 (2) ◽  
pp. 1461-1468 ◽  
Author(s):  
L. Hakim ◽  
A. Ruiz ◽  
T. Schmitt ◽  
M. Boileau ◽  
G. Staffelbach ◽  
...  
2016 ◽  
Vol 28 (5) ◽  
pp. 055106 ◽  
Author(s):  
M. Gonzalez-Flesca ◽  
T. Schmitt ◽  
S. Ducruix ◽  
S. Candel

2020 ◽  
Author(s):  
Aymeric Spiga ◽  
Naomi Murdoch ◽  
Don Banfield ◽  
Ralph Lorenz ◽  
Claire Newman ◽  
...  

<p>The InSight instrumentation for atmospheric science combines high frequency, high accuracy and continuity. This makes InSight a mission particularly suitable for studies of the variability in the Planetary Boundary Layer (PBL) of Mars -- all the more since this topic is of direct interest for quake detectability given that turbulence is the main contributor to atmosphere-induced seismic signal. For the strong daytime buoyancy-driven PBL convection, InSight significantly extends the statistics of dust-devil-like convective vortices and turbulent wind gustiness, both of which are of strong interest for aeolian science. For the moderate nighttime shear-induced PBL convection, InSight enables to explore phenomena and variability left unexplored by previous in-situ measurements on Mars. In both daytime and nighttime environments, how the gravity waves and infrasound signals discovered by InSight are being guided within the PBL is also a central topic to InSight's atmospheric investigations, with the tantalizing possibility to identify possible sources for those phenomena. InSight has been operating at the surface of Mars since 18 months, thus the seasonal evolution of the many phenomena occurring in the PBL will be an emphasis of this report. Comparisons with turbulence-resolving modeling such as Large-Eddy Simulations will be also discussed.</p>


AIAA Journal ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 2974-2991 ◽  
Author(s):  
Miguel R. Visbal ◽  
Stuart I. Benton

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
G. Paterakis ◽  
P. Koutmos

An investigation of ultralean stratified, disk stabilized, propane flames operated with acoustic modulation of the inlet velocity and fuel-air mixture profiles is presented. Transverse acoustic forcing was applied to the air, upstream of a double-cavity premixer section, formed along three concentric disks, which fueled the stabilization region with a radial mixture gradient. Measurements and supporting Large Eddy Simulations with a nine-step mechanism for propane combustion were performed to evaluate variations in the ultralean flame characteristics under forced and unforced conditions. The effects of forcing on the heat release profiles and on the interaction of the toroidal flame with the recirculation region are examined and discussed. The impact of the acoustic excitation of inlet conditions on the local extinction behavior is, also, assessed by monitoring a local stability criterion and by analyzing phase-resolved chemiluminescence images.


2012 ◽  
Vol 39 (3) ◽  
pp. 272-289 ◽  
Author(s):  
Bahram Khalighi ◽  
Gianluca Iaccarino ◽  
Yaser Khalighi

Sign in / Sign up

Export Citation Format

Share Document