scholarly journals Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia

2018 ◽  
Vol 167 ◽  
pp. 34-46 ◽  
Author(s):  
Rachelle S. Meyer ◽  
Brendan R. Cullen ◽  
Penny H. Whetton ◽  
Fiona A. Robertson ◽  
Richard J. Eckard
Geoderma ◽  
2022 ◽  
Vol 405 ◽  
pp. 115442
Author(s):  
Bin Wang ◽  
Jonathan M. Gray ◽  
Cathy M. Waters ◽  
Muhuddin Rajin Anwar ◽  
Susan E. Orgill ◽  
...  

Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 799 ◽  
Author(s):  
Susan E. Orgill ◽  
Jason R. Condon ◽  
Mark K. Conyers ◽  
Stephen G. Morris ◽  
Brian W. Murphy ◽  
...  

In the present field survey, 72 sites were sampled to assess the effect of climate (Monaro, Boorowa and Coleambally regions) and parent material (Monaro region only; basalt and granite) on soil organic carbon (OC) under perennial pastures. In the higher-rainfall zone (Monaro and Boorowa; >500mm mean annual rainfall), OC stocks under introduced and native perennial pastures were compared, whereas in the lower-rainfall zone (Coleambally; <500mm mean annual rainfall) OC stocks under crops and pastures were compared. Carbon fractions included total OC (TOC), particulate OC (POC), resistant OC (ROC) and humic OC (HUM). Higher OC stocks were associated with higher spring and summer rainfall and lower annual temperatures. Within a climatic zone, parent material affected the stock of OC fractions in the 0–30cm soil layer. Within a climatic zone, when grouped by parent material, there was no difference in OC stock with vegetation type. There were significant correlations between soil factors associated with parent material and OC concentration, including negative correlations between SiO2 and HUM (P<0.05) and positive correlations between cation exchange capacity and TOC, POC and ROC (P<0.01). TOC was also positively correlated with total nitrogen (N) and available sulfur (S; P<0.05), indicating organic matter in soil is important for N and S supply for plant production in the studied regions, and vice versa. Although ensuring adequate available S may increase OC stocks in south-eastern Australia, the large stock of OC in the soil under perennial pastures, and the dominating effect of climate and parent material on this stock, may mean that modest increases in soil OC due to management factors go undetected.


2009 ◽  
Vol 18 (5) ◽  
pp. 575-585 ◽  
Author(s):  
Ralph Mac Nally ◽  
Gregory Horrocks ◽  
Hania Lada ◽  
P. Sam Lake ◽  
James R. Thomson ◽  
...  

2017 ◽  
Vol 68 (12) ◽  
pp. 2366 ◽  
Author(s):  
Paul I. Boon

The distribution and productivity of mangroves is directly affected by a wide range of climatic drivers, including temperature, frost, rainfall, evaporation and storm activity, which, in turn, influence a suite of secondary drivers, including changes in freshwater run-off and sediment supply, groundwater dynamics and inter-species competitiveness. The highest-latitude expression of mangroves globally is at Millers Landing, Victoria (38°45′S), and because the vigour and productivity of mangroves across much of Victoria is thought to be limited by low winter temperatures and the incidence and severity of frosts, it is likely that mangroves will be among the first plant communities to be affected by climate change in coastal south-eastern Australia. An increase in plant vigour is likely, but there are almost no historical data with which to compare current rates of primary production. An extension of mangroves to higher latitudes on the mainland is impossible because of the geomorphology of the land that lies further to the south. Small-scale changes in distribution, including the progressive encroachment of mangroves into coastal saltmarsh, are likely to be among the clearest indications of the response of mangroves to a warming climate. Increased effort into tracking changes in mangrove vigour, productivity and distribution is clearly warranted.


Sign in / Sign up

Export Citation Format

Share Document