Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia

Geoderma ◽  
2007 ◽  
Vol 137 (3-4) ◽  
pp. 401-413 ◽  
Author(s):  
Sabine Kasel ◽  
Lauren T. Bennett
Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 799 ◽  
Author(s):  
Susan E. Orgill ◽  
Jason R. Condon ◽  
Mark K. Conyers ◽  
Stephen G. Morris ◽  
Brian W. Murphy ◽  
...  

In the present field survey, 72 sites were sampled to assess the effect of climate (Monaro, Boorowa and Coleambally regions) and parent material (Monaro region only; basalt and granite) on soil organic carbon (OC) under perennial pastures. In the higher-rainfall zone (Monaro and Boorowa; >500mm mean annual rainfall), OC stocks under introduced and native perennial pastures were compared, whereas in the lower-rainfall zone (Coleambally; <500mm mean annual rainfall) OC stocks under crops and pastures were compared. Carbon fractions included total OC (TOC), particulate OC (POC), resistant OC (ROC) and humic OC (HUM). Higher OC stocks were associated with higher spring and summer rainfall and lower annual temperatures. Within a climatic zone, parent material affected the stock of OC fractions in the 0–30cm soil layer. Within a climatic zone, when grouped by parent material, there was no difference in OC stock with vegetation type. There were significant correlations between soil factors associated with parent material and OC concentration, including negative correlations between SiO2 and HUM (P<0.05) and positive correlations between cation exchange capacity and TOC, POC and ROC (P<0.01). TOC was also positively correlated with total nitrogen (N) and available sulfur (S; P<0.05), indicating organic matter in soil is important for N and S supply for plant production in the studied regions, and vice versa. Although ensuring adequate available S may increase OC stocks in south-eastern Australia, the large stock of OC in the soil under perennial pastures, and the dominating effect of climate and parent material on this stock, may mean that modest increases in soil OC due to management factors go undetected.


Geoderma ◽  
2022 ◽  
Vol 405 ◽  
pp. 115442
Author(s):  
Bin Wang ◽  
Jonathan M. Gray ◽  
Cathy M. Waters ◽  
Muhuddin Rajin Anwar ◽  
Susan E. Orgill ◽  
...  

2012 ◽  
Vol 18 (6) ◽  
pp. 2081-2088 ◽  
Author(s):  
Adrian Chappell ◽  
Jonathan Sanderman ◽  
Mark Thomas ◽  
Arthur Read ◽  
Chris Leslie

2018 ◽  
Vol 167 ◽  
pp. 34-46 ◽  
Author(s):  
Rachelle S. Meyer ◽  
Brendan R. Cullen ◽  
Penny H. Whetton ◽  
Fiona A. Robertson ◽  
Richard J. Eckard

Agriculture ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 181 ◽  
Author(s):  
Deb Aryal ◽  
Danilo Morales Ruiz ◽  
César Tondopó Marroquín ◽  
René Pinto Ruiz ◽  
Francisco Guevara Hernández ◽  
...  

Land use change from forests to grazing lands is one of the important sources of greenhouse gas emissions in many parts of the tropics. The objective of this study was to analyze the extent of soil organic carbon (SOC) loss from the conversion of native forests to pasturelands in Mexico. We analyzed 66 sets of published research data with simultaneous measurements of soil organic carbon stocks between native forests and pasturelands in Mexico. We used a generalized linear mixed effect model to evaluate the effect of land use change (forest versus pasture), soil depth, and original native forest types. The model showed that there was a significant reduction in SOC stocks due to the conversion of native forests to pasturelands. The median loss of SOC ranged from 31.6% to 52.0% depending upon the soil depth. The highest loss was observed in tropical mangrove forests followed by highland tropical forests and humid tropical forests. Higher loss was detected in upper soil horizon (0–30 cm) compared to deeper horizons. The emissions of CO2 from SOC loss ranged from 46.7 to 165.5 Mg CO2 eq. ha−1 depending upon the type of original native forests. In this paper, we also discuss the effect that agroforestry practices such as silvopastoral arrangements and other management practices like rotational grazing, soil erosion control, and soil nutrient management can have in enhancing SOC stocks in tropical grasslands. The results on the degree of carbon loss can have strong implications in adopting appropriate management decisions that recover or retain carbon stocks in biomass and soils of tropical livestock production systems.


Human Ecology ◽  
2021 ◽  
Author(s):  
Brooke P. Deak ◽  
Bertram Ostendorf ◽  
Douglas K. Bardsley ◽  
David A. Taggart ◽  
David E. Peacock

2016 ◽  
Vol 80 (4) ◽  
pp. 1089-1097 ◽  
Author(s):  
Sarah E. Kolbe ◽  
Arnold I. Miller ◽  
Amy Townsend-Small ◽  
Guy N. Cameron ◽  
Theresa M. Culley

2014 ◽  
Vol 11 (22) ◽  
pp. 6483-6493 ◽  
Author(s):  
C. Ferré ◽  
R. Comolli ◽  
A. Leip ◽  
G. Seufert

Abstract. Effects of forest conversion to poplar plantation on soil organic carbon (SOC) stocks were investigated by sampling paired plots in an alluvial area of the Ticino River in Northern Italy. According to land registers and historical aerial photographs, the two sites were part of a larger area of a 200 yr old natural forest that was partly converted to poplar plantation in 1973. The soil sampling of three layers down to a depth of 100 cm was performed at 90 and 70 points in the natural forest (NF) and in the nearby poplar plantation (PP) respectively. The substitution of the natural forest with the poplar plantation strongly modified soil C stock down to a depth of 55 cm, although the management practices at PP were not intensive. After calculation of equivalent soil masses and of SOC stocks in individual texture classes, the comparison of C stocks showed an overall decrease in SOC of 5.7 kg m−2 or 40% in consequence of 37 years of poplar cultivation. Our case study provides further evidence that (i) spatial heterogeneity of SOC is an important feature in paired plot studies requiring a careful sampling strategy and high enough number of samples; (ii) land use changes through tillage are creating a more homogeneous spatial structure of soil properties and may require the application of dedicated spatial statistics to tackle eventual problems of pseudo-replicates and auto-correlation; (iii) short rotation forests are not properly represented in current reporting schemes for changes of SOC after land use change and may better be considered as cropland.


Sign in / Sign up

Export Citation Format

Share Document