Temporal variation of stocking rate and primary production in the face of drought and land use change

2020 ◽  
Vol 178 ◽  
pp. 102750
Author(s):  
J.G.N. Irisarri ◽  
M. Oesterheld
Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1587
Author(s):  
Imam Basuki ◽  
J. Boone Kauffman ◽  
James T. Peterson ◽  
Gusti Z. Anshari ◽  
Daniel Murdiyarso

Deforested and converted tropical peat swamp forests are susceptible to fires and are a major source of greenhouse gas (GHG) emissions. However, information on the influence of land-use change (LUC) on the carbon dynamics in these disturbed peat forests is limited. This study aimed to quantify soil respiration (heterotrophic and autotrophic), net primary production (NPP), and net ecosystem production (NEP) in peat swamp forests, partially logged forests, early seral grasslands (deforested peat), and smallholder-oil palm estates (converted peat). Peat swamp forests (PSF) showed similar soil respiration with logged forests (LPSF) and oil palm (OP) estates (37.7 Mg CO2 ha−1 yr−1, 40.7 Mg CO2 ha−1 yr−1, and 38.7 Mg CO2 ha−1 yr−1, respectively), but higher than early seral (ES) grassland sites (30.7 Mg CO2 ha−1 yr−1). NPP of intact peat forests (13.2 Mg C ha−1 yr−1) was significantly greater than LPSF (11.1 Mg C ha−1 yr−1), ES (10.8 Mg C ha−1 yr−1), and OP (3.7 Mg C ha−1 yr−1). Peat swamp forests and seral grasslands were net carbon sinks (10.8 Mg CO2 ha−1 yr−1 and 9.1 CO2 ha−1 yr−1, respectively). In contrast, logged forests and oil palm estates were net carbon sources; they had negative mean Net Ecosystem Production (NEP) values (−0.1 Mg CO2 ha−1 yr−1 and −25.1 Mg CO2 ha−1 yr−1, respectively). The shift from carbon sinks to sources associated with land-use change was principally due to a decreased Net Primary Production (NPP) rather than increased soil respiration. Conservation of the remaining peat swamp forests and rehabilitation of deforested peatlands are crucial in GHG emission reduction programs.


2020 ◽  
Vol 35 (7) ◽  
pp. 1571-1586 ◽  
Author(s):  
Lucas Carvalho Gomes ◽  
Felix J. J. A. Bianchi ◽  
Irene M. Cardoso ◽  
Elpídio I. Fernandes Filho ◽  
Rogier P. O. Schulte

2018 ◽  
Vol 10 (9) ◽  
pp. 3266 ◽  
Author(s):  
Ana Santos ◽  
Marcos Costa

This study investigated the influence of large slaughterhouses on five variables, two related to environment impact (land use change rate and greenhouse gases emissions (GE)), and three related to cattle-ranching intensification (protein from crops, calories from crops and stocking rate). In Amazonia, the results show a reduction of the land use change rate and GE in zones both with and without the influence of large slaughterhouses. The hypothesis that slaughterhouses are leverage points to reduce deforestation in the biome was not confirmed. The slaughterhouses also seem to have no effect on cattle ranching intensification, as protein and calories production increased significantly in both zones, while the stocking rates did not change in the influence zones. In the Cerrado, cattle-ranching intensification is a reality, and is occurring independently of the presence of large slaughterhouses. In conclusion, the results show no evidence that large slaughterhouses have promoted either cattle-ranching intensification or improvements in the sustainability of the cattle-ranching activity in Amazonia and the Cerrado.


2015 ◽  
Vol 47 ◽  
pp. 426-438 ◽  
Author(s):  
Simone Gingrich ◽  
Maria Niedertscheider ◽  
Thomas Kastner ◽  
Helmut Haberl ◽  
Georgia Cosor ◽  
...  

2021 ◽  
Author(s):  
Dmitry Yumashev ◽  
Victoria Janes-Bassett ◽  
John Redhead ◽  
Ed Rowe ◽  
Jessica Davies

<p>It is widely accepted in the scientific, business and policy communities that meeting the Paris Agreement targets will require a large-scale deployment of negative emission technologies and practices. As a result, nature-based climate solutions, including carbon sequestration (Cseq) in soils and forests, have received much attention in the literature recently. Several national and global assessments have identified considerable potential for terrestrial Cseq, while other studies have raised doubts regarding its practical limits in the face of the likely future pressures from climate change and land use change. In general, the existing Cseq assessments lack sensitivity to climate change, perspective on local land use and nutrient limitations. Accounting for these factors requires process-based modelling, and is feasible only at national to regional scales at present, underpinned by a wide body of local evidence. Here, we apply an integrated terrestrial C-N-P cycle model (N14CP) with representative ranges of high-resolution climate and land use scenarios to estimate Cseq potential in temperate regions, using the UK as a national-scale example. Meeting realistic UK targets for grassland restoration and forestation over the next 30 years is estimated to sequester an additional 120 TgC by 2100 (similar to current annual UK greenhouse gas emissions), conditional on climate change of <2°C. Conversely, UK arable expansion would reduce Cseq by a similar magnitude, while alternative arable management practices such as extensive rotations with grass leys would have a comparatively small effect on country-wide Cseq outcomes. Most importantly, the simulations suggest that warmer climates will cause net reductions in Cseq as soil carbon losses exceed gains from increased plant productivity. Our analysis concludes that concerted land use change can make a moderate contribution to Cseq, but this is dependent on us cutting emissions from fossil fuels, soil degradation and deforestation in line with a <2°C pathway.</p>


Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 982
Author(s):  
Zhou Xue ◽  
Yang Zhou

Land-use cover is undergoing intense change under global climate change and rapid urbanization, especially in the Loess Plateau, where ecological restoration policies like Green for Grain Project (GFGP) have been vigorously implemented since the 1980s. The main objective of this study was to distinguish the difference of spatio-temporal variation of land-use change in the two study periods of 1980–2000 and 2000–2020 at the county scales. Geographically and temporally weighted regression (GTWR) was employed to handle both the spatial and temporal heterogeneity of the driving forces for land use change. The results showed that the quantity of construction land, woodland and grassland experienced continuous growth, but arable land declined substantially. The results of GTWR model showed that the dominant influencing factors of land-use change had temporal and spatial differences in the Loess Plateau. Specifically, the implementation of GFGP and precipitation accelerated the changes in arable land, grassland and woodland. For construction land, its growth was mainly promoted by gross domestic product (GDP) and population, both of which had more obvious positive effects in the last 20 years. The findings provide a scientific basis to put forward countermeasures emphasizing sustainable land use in the Loess Plateau.


2020 ◽  
Vol 241 ◽  
pp. 106407
Author(s):  
Alvaro Castilla-Beltrán ◽  
Henry Hooghiemstra ◽  
Menno L.P. Hoogland ◽  
Timme H. Donders ◽  
Jaime R. Pagán-Jiménez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document