Effects of three in-field water harvesting technologies on soil water content and maize yields in a semi-arid region of Zimbabwe

2019 ◽  
Vol 216 ◽  
pp. 206-213 ◽  
Author(s):  
Isaiah Nyagumbo ◽  
George Nyamadzawo ◽  
Connie Madembo
2022 ◽  
Vol 53 ◽  
Author(s):  
Marcos Makeison Moreira de Sousa ◽  
Eunice Maia de Andrade ◽  
Helba Araújo de Quairoz Palácio ◽  
Pedro Henrique Augusto Medeiros ◽  
Jacques Carvalho Ribeiro Filho

2021 ◽  
Author(s):  
Dejun Yang ◽  
BIAN Zhengfu

Abstract Based on soil sampling, lab experiment and support resistance monitoring, the disturbance of soil physical quality indices between different underground mining stages of No 52303 working face was studied in semi-arid region of western China. Soil sampling was conducted in same locations before and after mining in 2014. This study proved that soil water content, soil cohesion and soil porosity were greatly decreased, while bulk density and dry density were increased by coal mining. In comparison, coal mining had slight effect on organic matter, internal fraction angle, and D1 and D2 percent. Underground pressure monitoring showed that P1 during stage 2 was significantly greater than that during stage 1, indicating the large difference of pressure characteristics in tail areas of working face between two stages. Both soil water content and soil cohesion were decreased during two stages in two sites. Soil cohesion was strongly correlated to soil water content, and D1 and D2 percent in 2013 and 2014. Coal mining subsidence increased the cumulative probability to reach the same value of soil water content and soil cohesion. The cover depth produced different elastic and plastic zone widths between sites by theoretical model calculation, consistent with the support resistances in tail areas of working face. Higher pressure might cause a more serious destructive rock-soil body and a larger groundwater level decrease. The dryer and more serious erosive soil column induced by coal mining is a non negligible matter for the semi-arid region.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


2009 ◽  
Vol 6 (3) ◽  
pp. 4265-4306 ◽  
Author(s):  
K. Verbist ◽  
W. M. Cornelis ◽  
D. Gabriels ◽  
K. Alaerts ◽  
G. Soto

Abstract. In arid and semi-arid zones runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Nevertheless, few efforts were observed to quantify the water harvesting processes of these techniques and to evaluate their efficiency. In this study a combination of detailed field measurements and modelling with the HYDRUS-2D software package was used to visualize the effect of an infiltration trench on the soil water content of a bare slope in Northern Chile. Rainfall simulations were combined with high spatial and temporal resolution water content monitoring in order to construct a useful dataset for inverse modelling purposes. Initial estimates of model parameters were provided by detailed infiltration and soil water retention measurements. Four different measurement techniques were used to determine the saturated hydraulic conductivity (Ksat) independently. Tension infiltrometer measurements proved a good estimator of the Ksat value and a proxy for those measured under simulated rainfall, whereas the pressure and constant head well infiltrometer measurements showed larger variability. Six different parameter optimization functions were tested as a combination of soil-water content, water retention and cumulative infiltration data. Infiltration data alone proved insufficient to obtain high model accuracy, due to large scatter on the data set, and water content data were needed to obtain optimized effective parameter sets with small confidence intervals. Correlation between observed soil water content and simulated values was as high as R2=0.93 for ten selected observation points used in the model calibration phase, with overall correlation for the 22 observation points equal to 0.85. Model results indicate that the infiltration trench has a significant effect on soil water storage, especially at the base of the trench.


2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


2021 ◽  
Author(s):  
Mehrez Zribi ◽  
Simon Nativel ◽  
Michel Le Page

<p>This paper aims to analyze the agronomic drought in a highly anthropogenic  semi-arid region, North Africa. In the context of the Mediterranean climate, characterized by frequent droughts, North Africa is particularly affected. Indeed, in addition to this climatic aspect, it is one of the areas most affected by water scarcity in the world. Thus, understanding and describing agronomic drought is essential. The proposed study is based on remote sensing data from TERRA-MODIS and ASCAT satellite, describing the dynamics of vegetation cover and soil water content through NDVI and SWI indices. Two indices are analyzed, the Vegetation Anomaly Index (VAI) and the Moisture Anomaly Index (MAI). The dynamics of the VAI is analyzed for different types of regions (agircultural, forest areas). The contribution of vegetation cover is combined with the effect of soil water content through a new drought index combining the VAI and MAI. A discussion of this combination is proposed on different study areas in the study region. It illustrates the complementarity of these two informations in analysis of agronomic drought.</p>


Sign in / Sign up

Export Citation Format

Share Document