Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models

2021 ◽  
Vol 245 ◽  
pp. 106547
Author(s):  
Junliang Fan ◽  
Jing Zheng ◽  
Lifeng Wu ◽  
Fucang Zhang
2017 ◽  
Author(s):  
Eelke B. Lenselink ◽  
Niels ten Dijke ◽  
Brandon Bongers ◽  
George Papadatos ◽  
Herman W.T. van Vlijmen ◽  
...  

AbstractThe increase of publicly available bioactivity data in recent years has fueled and catalyzed research in chemogenomics, data mining, and modeling approaches. As a direct result, over the past few years a multitude of different methods have been reported and evaluated, such as target fishing, nearest neighbor similarity-based methods, and Quantitative Structure Activity Relationship (QSAR)-based protocols. However, such studies are typically conducted on different datasets, using different validation strategies, and different metrics.In this study, different methods were compared using one single standardized dataset obtained from ChEMBL, which is made available to the public, using standardized metrics (BEDROC and Matthews Correlation Coefficient). Specifically, the performance of Naive Bayes, Random Forests, Support Vector Machines, Logistic Regression, and Deep Neural Networks was assessed using QSAR and proteochemometric (PCM) methods. All methods were validated using both a random split validation and a temporal validation, with the latter being a more realistic benchmark of expected prospective execution.Deep Neural Networks are the top performing classifiers, highlighting the added value of Deep Neural Networks over other more conventional methods. Moreover, the best method (‘DNN_PCM’) performed significantly better at almost one standard deviation higher than the mean performance. Furthermore, Multi task and PCM implementations were shown to improve performance over single task Deep Neural Networks. Conversely, target prediction performed almost two standard deviations under the mean performance. Random Forests, Support Vector Machines, and Logistic Regression performed around mean performance. Finally, using an ensemble of DNNs, alongside additional tuning, enhanced the relative performance by another 27% (compared with unoptimized DNN_PCM).Here, a standardized set to test and evaluate different machine learning algorithms in the context of multitask learning is offered by providing the data and the protocols.


Author(s):  
Achyuth Kothuru ◽  
Sai Prasad Nooka ◽  
Rui Liu

Machining industry has been evolving towards implementation of automation into the process for higher productivity and efficiency. Although many studies have been conducted in the past to develop intelligent monitoring systems in various application scenarios of machining processes, most of them just focused on cutting tools without considering the influence due to the non-uniform hardness of workpiece material. This study develops a compact, reliable, and cost-effective intelligent Tool Condition Monitoring (TCM) model to detect the cutting tool wear in machining of the workpiece material with hardness variation. The generated audible sound signals during the machining process will be analyzed by state of the art artificial intelligent techniques, Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs), to predict the tool condition and the hardness variation of the workpiece. A four-level classification model is developed for the system to detect the tool wear condition based on the width of the flank wear land and hardness variation of the workpiece. The study also involves comparative analysis between two employed artificial intelligent techniques to evaluate the performance of models in predicting the tool wear level condition and workpiece hardness variation. The proposed intelligent models have shown a significant prediction accuracy in detecting the tool wear and from the audible sound into the proposed multi-classification wear class in the end-milling process of non-uniform hardened workpiece.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257901
Author(s):  
Yanjing Bi ◽  
Chao Li ◽  
Yannick Benezeth ◽  
Fan Yang

Phoneme pronunciations are usually considered as basic skills for learning a foreign language. Practicing the pronunciations in a computer-assisted way is helpful in a self-directed or long-distance learning environment. Recent researches indicate that machine learning is a promising method to build high-performance computer-assisted pronunciation training modalities. Many data-driven classifying models, such as support vector machines, back-propagation networks, deep neural networks and convolutional neural networks, are increasingly widely used for it. Yet, the acoustic waveforms of phoneme are essentially modulated from the base vibrations of vocal cords, and this fact somehow makes the predictors collinear, distorting the classifying models. A commonly-used solution to address this issue is to suppressing the collinearity of predictors via partial least square regressing algorithm. It allows to obtain high-quality predictor weighting results via predictor relationship analysis. However, as a linear regressor, the classifiers of this type possess very simple topology structures, constraining the universality of the regressors. For this issue, this paper presents an heterogeneous phoneme recognition framework which can further benefit the phoneme pronunciation diagnostic tasks by combining the partial least square with support vector machines. A French phoneme data set containing 4830 samples is established for the evaluation experiments. The experiments of this paper demonstrates that the new method improves the accuracy performance of the phoneme classifiers by 0.21 − 8.47% comparing to state-of-the-arts with different data training data density.


Sign in / Sign up

Export Citation Format

Share Document