Photosynthetic and physiological responses to drought of Jerusalem artichoke genotypes differing in drought resistance

2022 ◽  
Vol 259 ◽  
pp. 107252
Author(s):  
Darunee Puangbut ◽  
Sanun Jogloy ◽  
Nimitr Vorasoot ◽  
Patcharin Songsri
2020 ◽  
Author(s):  
Shipeng Yang ◽  
Lihui Wang ◽  
Qiwen Zhong ◽  
Guangnan Zhang ◽  
Haiwang Zhang ◽  
...  

Abstract Background Jerusalem artichoke (Helianthus tuberosus L.) is a highly stress-resistant crop, especially it grows normally in the desertified land of Qinghai-Tibet Plateau in the past two years, and has become a crop with agricultural, industrial and ecological functions. However, there are few studies on drought resistance of Jerusalem artichoke at present, and studies on the mechanisms of stress resistance of Jerusalem artichoke breeding and fructan are seriously lagging behind. In this study, we selected two differentially resistant cultivars for drought stress experiments with different concentration gradients, the aim was finding DEGs and metabolic pathways associated with drought stress. Results Based on an additional analysis of the metabolic pathways under drought stress using MapMan, the most different types of metabolism included secondary metabolism, light reaction metabolism and cell wall. As a whole, QY1 and QY3 both had a large number of up-regulated genes in the flavor pathway. It was suggested that flavonoids could help Jerusalem artichoke to resist drought stress and maintain normal metabolic activities. In addition, the gene analysis of the abscisic acid (ABA) key metabolic pathway showed that QY3 had more genes in NAC and WRKY than QY1, but QY1 had more genes in response to drought stress as a whole. By combining RNA-Seq and WGCNA, a weighted gene co-expression network was constructed and divided into modules. By analyzing specifically the expressed modules, four modules were found to have the highest correlation with drought. Further research on the genes revealed that all 16 genes related to histone, ABA and protein kinase had the highest significance in these pathways. Conclusions These findings represent the first RNA-Seq analysis of drought stress in Jerusalem artichoke, which is of substantial significance to explore the function of drought resistance in Jerusalem artichoke and the excavation of related genes.


2020 ◽  
Author(s):  
Shipeng Yang ◽  
Lihui Wang ◽  
Qiwen Zhong ◽  
Guangnan Zhang ◽  
Dengshan Zhang ◽  
...  

Abstract Background: Jerusalem artichoke (Helianthus tuberosus L.) is strongly resistant to stress and an important plant used for ecological management in northern China in recent years. Currently, Jerusalem artichoke has been widely planted in the area around Qinghai Lake in Qinghai Province, China. Jerusalem artichoke can not only prevent land desertification but also has maintain most of its level of production. However, there is little research on the mechanism of drought resistance of Jerusalem artichoke.Results: We conducted transcriptome sequencing under drought stress and normal watering treatment for two varieties, QY1 and QY3, with differing degrees of drought tolerance. In the three stress periods of QY1 and QY3, 5,613, 12,985 and 24,923 differentially expressed genes (DEGs) were identified, respectively. GO analysis showed that there were more DEGs in QY1 than in QY3, but there were more up-regulated genes in QY3 than in QY1. Based on an additional analysis of the metabolic pathways under drought stress using MapMan, the most different types of metabolism included secondary metabolism, light reaction metabolism and cell wall. The up-regulated genes in QY3 were significantly more prevalent than those in QY1 and were primarily concentrated in flavor IDS, phenylpropanoids, and the shikimate and terpenoids pathway. As a whole, QY1 and QY3 both had a large number of up-regulated genes in the flavor pathway. In addition, the gene analysis of the ABA key metabolic pathway showed that QY3 had more genes in NAC and WRKY than QY1. A weighted gene co-expression network was constructed and divided into modules. By specifically analyzing the expressed modules, four modules were found to have the highest correlation with drought. Further research on the genes revealed that all 16 genes related to histone, ABA and protein kinase were the most significant in these pathways.Conclusions: In summary, these findings represent the first RNA-Seq analysis of drought stress in Jerusalem artichoke, which is of substantial significance to explore the function of drought resistance in Jerusalem artichoke and the unearthing of related genes.


Author(s):  
Markus Kränzlein ◽  
Christoph-Martin Geilfus ◽  
Bastian L. Franzisky ◽  
Xudong Zhang ◽  
Monika A. Wimmer ◽  
...  

AbstractMaize is the most important crop worldwide in terms of production and yield, but every year a considerable amount of yield is lost due to drought. The foreseen increase in the number of drought spells due to climate change raises the question whether the ability to recover quickly after a water pulse may be a relevant trait for overall drought resistance. We here address the following hypotheses: (i) different maize hybrids exhibit distinct physiological adaptive responses to drought stress and (ii) these responses affect the ability to recover from the stress. (iii) The relative biomass production of maize hybrids, which show severe drought symptoms but are able to recover quickly after a water pulse, is comparable to those hybrids, which invest more energy into tolerance mechanisms. The physiological responses of eight maize hybrids to repeated drought were elucidated employing physiological parameters such as electrolyte leakage, osmolality, relative water content, growth rate and gas-exchange measurements. Only one hybrid was able to maintain biomass production under drought conditions. Amongst the others, two hybrids with similar growth inhibition but contrasting physiological responses were identified by a PCA analysis. Both strategies, i.e. stabilization of leaf water content via resistance mechanisms versus high recovery potential were equally effective in maintaining aboveground biomass production in the scenario of a long drought intermitted by a water-pulse. However, each strategy might be advantageous under different drought stress scenarios. Overall, the recovery potential is underestimated in drought resistance under natural conditions, which includes periodic cycles of drought and rewatering, and should be considered in screening trials.


HortScience ◽  
1999 ◽  
Vol 34 (5) ◽  
pp. 897-901 ◽  
Author(s):  
Bingru Huang ◽  
Hongwen Gao

Drought is among the most limiting factors for turfgrass growth. Understanding genetic variations and physiological mechanisms in turfgrass drought resistance would facilitate breeding and management programs to improve drought resistance. The experiment was designed to investigate shoot physiological responses of six tall fescue (Festuca arundinacea Schreb.) cultivars representing several generations of turfgrass improvement to drought stress. Grasses were grown in well-watered or drying (nonirrigated) soil for 35 days in the greenhouse. Net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), relative water content (RWC), and photochemical efficiency (Fv/Fm) declined during drought progression in all cultivars, but the time and the severity of reductions varied with cultivar and physiological factors. The values of Pn, RWC, gs, and Tr decreased significantly for `Rebel Jr', `Bonsai', and `Phoenix' when soil water content declined to 20% after 9 days of treatment (DOT) and for `Houndog V', `Kentucky-31', and `Falcon II' when soil water content dropped to 10% at 15 DOT. A significant decrease in Fv/Fm was not observed in drought-stressed plants until 21 DOT for `Rebel Jr', `Bonsai', and `Phoenix' and 28 DOT for `Houndog V', `Kentucky-31', and `Falcon II'. The decline in Pn resulted mainly from internal water deficit and stomatal closure under mild drought-stress conditions. After a prolonged period of drought stress (35 DOT), `Falcon II', `Houndog V', and `Kentucky-31' maintained higher Pn than did `Rebel Jr', `Bonsai', and `Phoenix', which could be attributed to their higher Fv/Fm. This study demonstrated variation in drought resistance among tall fescue cultivars, which was related to their differential responses in photosynthetic capacity and water relations.


Author(s):  
Pu Zhao ◽  
Jin Wang ◽  
Niran Juntawong ◽  
Chokechai Aekatasanawan ◽  
Prasart Kermanee ◽  
...  

Understanding of the response of tropical and temperate maize (Zea mays L.) to drought is the first step for tolerant temperate maize improvement. Eight maize hybrids were used to investigate physiology responses under drought stress, four of them were tropical maize and the others were temperate maize. Results showed that there were different drought tolerances but similar trends in both tropical maize and temperate maize. Gas exchange parameters revealed different strategies of maize under the stress. In our study, most of the temperate hybrids maintained open stomata to keep a higher photosynthesis rate at the beginning of stress, while the other hybrids decreased stomatal conductance. Compared to temperate maize, the tropical maize had higher antioxidase activity and greater physiological parameter variation among hybrids. KS5731 and ZD309 had stronger drought resistance among tropical and temperate maize hybrids separately. Tolerant hybrids maintained active photosynthesis, have higher osmotic adjustment ability and antioxidase activities but lower malonaldehyde content than the sensitive ones. Our results led to a better understanding of the physiological responses of tropical and temperate maize plants to drought stress and may provide an insight of breeding for drought resistance in maize.


2016 ◽  
Vol 15 (2) ◽  
pp. 172-179
Author(s):  
Pienyani Rosawanti

The study of physiological responses of soybean to drought stress could be a useful tool to the understanding of the mechanisms of drought resistance. Study was conducted to evaluate the effect of water stress on chlorophyll and prolin accumulation rate. This study was conducted in the Cikabayan greenhouse IPB using ten genotypes of soybean (Ratai, Seulawah, Slamet, Tanggamus, Wilis, GC 22-10, PG 57-1, SC 21-5, SC 39-1, SP 30-4) and PEG (0%, 20%). The result showed that drought stress with PEG simulation significant effect on chlorophyll and proline content.


2020 ◽  
Vol 29 (4) ◽  
pp. 685-690
Author(s):  
C. S. Vanaja ◽  
Miriam Soni Abigail

Purpose Misophonia is a sound tolerance disorder condition in certain sounds that trigger intense emotional or physiological responses. While some persons may experience misophonia, a few patients suffer from misophonia. However, there is a dearth of literature on audiological assessment and management of persons with misophonia. The purpose of this report is to discuss the assessment of misophonia and highlight the management option that helped a patient with misophonia. Method A case study of a 26-year-old woman with the complaint of decreased tolerance to specific sounds affecting quality of life is reported. Audiological assessment differentiated misophonia from hyperacusis. Management included retraining counseling as well as desensitization and habituation therapy based on the principles described by P. J. Jastreboff and Jastreboff (2014). A misophonia questionnaire was administered at regular intervals to monitor the effectiveness of therapy. Results A detailed case history and audiological evaluations including pure-tone audiogram and Johnson Hyperacusis Index revealed the presence of misophonia. The patient benefitted from intervention, and the scores of the misophonia questionnaire indicated a decrease in the severity of the problem. Conclusions It is important to differentially diagnose misophonia and hyperacusis in persons with sound tolerance disorders. Retraining counseling as well as desensitization and habituation therapy can help patients who suffer from misophonia.


2002 ◽  
Author(s):  
Rebecca L. Stump ◽  
Judith C. Conger ◽  
Scott Vrana

Sign in / Sign up

Export Citation Format

Share Document