scholarly journals 41In vitro human myometrial contractility in pregnancies complicated with obesity

2021 ◽  
Vol 224 (2) ◽  
pp. S29-S30
Author(s):  
Hiba Mustafa ◽  
Weston Upchurch ◽  
Rachel Vogel ◽  
Paul Iaizoo ◽  
Kate Neitzke ◽  
...  
2017 ◽  
Author(s):  
S Santos ◽  
C Haslinger ◽  
M Hamburger ◽  
M Mennet ◽  
O Potterat ◽  
...  

2019 ◽  
Author(s):  
S Santos ◽  
C Haslinger ◽  
K Kalic ◽  
MT Faleschini ◽  
M Mennet ◽  
...  

2020 ◽  
Vol 19 (2) ◽  
pp. 193-200
Author(s):  
Jorge A. Carvajal ◽  
Joaquín I. Oporto

: Obesity is a worldwide public health problem, affecting at least one-third of pregnant women. One of the main problems of obesity during pregnancy is the resulting high rate of cesarean section. The leading cause of this higher frequency of cesarean sections in obese women, compared with that in nonobese women, is an altered myometrial function that leads to lower frequency and potency of contractions. In this article, the disruptions of myometrial myocytes were reviewed in obese women during pregnancy that may explain the dysfunctional labor. The myometrium of obese women exhibited lower expression of connexin43, a lower function of the oxytocin receptor, and higher activity of the potassium channels. Adipokines, such as leptin, visfatin, and apelin, whose concentrations are higher in obese women, decreased myometrial contractility, perhaps by inhibiting the myometrial RhoA/ROCK pathway. The characteristically higher cholesterol levels of obese women alter myometrial myocyte cell membranes, especially the caveolae, inhibiting oxytocin receptor function, and increasing the K+ channel activity. All these changes in the myometrial cells or their environment decrease myometrial contractility, at least partially explaining the higher rate of cesarean of sections in obese women.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barbara Jana ◽  
Jarosław Całka

AbstractUterine inflammation is a very common and serious condition in domestic animals. To development and progression of this pathology often lead disturbances in myometrial contractility. Participation of β1-, β2- and β3-adrenergic receptors (ARs) in noradrenaline (NA)-influenced contractility of the pig inflamed uterus was studied. The gilts of SAL- and E.coli-treated groups were administered saline or E.coli suspension into the uterine horns, respectively. Laparotomy was only done in the CON group. Compared to the period before NA administration, this neurotransmitter reduced the tension, amplitude and frequency in uterine strips of the CON and SAL groups. In the E.coli group, NA decreased the amplitude and frequency, and these parameters were lower than in other groups. In the CON, SAL and E.coli groups, β1- and β3-ARs antagonists in more cases did not significantly change and partly eliminated NA inhibitory effect on amplitude and frequency, as compared to NA action alone. In turn, β2-ARs antagonist completely abolished NA relaxatory effect on these parameters in three groups. Summarizing, NA decreases the contractile amplitude and frequency of pig inflamed uterus via all β-ARs subtypes, however, β2-ARs have the greatest importance. Given this, pharmacological modulation of particular β-ARs subtypes can be used to increase inflamed uterus contractility.


2021 ◽  
Vol 22 (12) ◽  
pp. 6415
Author(s):  
Barbara Jana ◽  
Jarosław Całka ◽  
Bartosz Miciński

Uterine inflammation is a very common and serious pathology in domestic animals, the development and progression of which often result from disturbed myometrial contractility. We investigated the effect of inflammation on the protein expression of galanin (GAL) receptor subtypes (GALR)1 and GALR2 in myometrium and their role in the contractile amplitude and frequency of an inflamed gilt uterus. The gilts of the E. coli and SAL groups received E. coli suspension or saline in their uteri, respectively, and only laparotomy was performed (CON group). Eight days later, the E. coli group developed severe acute endometritis and lowered GALR1 protein expression in the myometrium. Compared to the pretreatment period, GAL (10−7 M) reduced the amplitude and frequency in myometrium and endometrium/myometrium of the CON and SAL groups, the amplitude in both stripes and frequency in endometrium/myometrium of the E. coli group. In this group, myometrial frequency after using GAL increased, and it was higher than in other groups. GALR2 antagonist diminished the decrease in amplitude in myometrium and the frequency in endometrium/myometrium (SAL, E. coli groups) induced by GAL (10−7 M). GALR1/GALR2 antagonist and GAL (10−7 M) reversed the decrease in amplitude and diminished the decrease in frequency in both examined stripes (CON, SAL groups), and diminished the drop in amplitude and abolished the rise in the frequency in the myometrium (E. coli group). In summary, the inflammation reduced GALR1 protein expression in pig myometrium, and GALR1 and GALR2 participated in the contractile regulation of an inflamed uterus.


PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0220020
Author(s):  
Vibeke Moen ◽  
Lars Brudin ◽  
Anette Ebberyd ◽  
Maria Sennström ◽  
Gunvor Ekman-Ordeberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document