scholarly journals Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network

2015 ◽  
Vol 10 (4) ◽  
pp. 331-340 ◽  
Author(s):  
A. Michael Rajesh ◽  
Shreya A. Bhatt ◽  
Harshad Brahmbhatt ◽  
Pritpal Singh Anand ◽  
Kiritkumar Mangaldas Popat
2018 ◽  
Vol 547 (1-2) ◽  
pp. 385-394 ◽  
Author(s):  
David Cheng Thiam Tan ◽  
Jeremy Jianming Ong ◽  
Rajeev Gokhale ◽  
Paul Wan Sia Heng

2009 ◽  
Vol 15 (5) ◽  
pp. 511-517 ◽  
Author(s):  
Sradhanjali Patra ◽  
Rakesh Samantaray ◽  
Saswat Pattnaik ◽  
B. B. Barik

The bitter taste is one of the most important drug formulation problems. The unpleasant taste leads to noncompliance, which consequently decreases the therapeutic efficacy of the drug. Therefore, masking of bitter taste is very important in drug formulation. In this study an antihypertensive drug, valsartan, which is a weak acid with bitter taste, was used as a model drug to mask its taste with dowex2 (weak base anion exchange resin). The taste masking of a drug using ion exchange resin basically depends on the complex formation between the drug and a specific type of resin. Complex formation under various preparation conditions including; the ratio of drug to resin, mixing time, the pH of the processing medium and the concentration of valsartan was investigated in this study. Optimum conditions for complex formation and maximum drug load were obtained at a drug-resin ratio 1:8, mixing time 4 hours, pH 6.8, temperature 50º C and drug concentration 0.02% w/v. The drug resin ate complex was evaluated for the drug content, taste, drug release and molecular properties. The resinate formation was confirmed using different analytical techniques like thermal analysis using differential scanning calorimetry (DSC), spectroscopic method like Fourier transform infrared spectroscopy (FTIR) and by X-ray powder diffraction analysis (XRPD).


10.32947/358 ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 11-25

The bitter taste is one of the most important drug formulation problems. The unpleasant taste leads to noncompliance, which consequently decreases the therapeutic efficacy of the drug. Therefore, masking of bitter taste is very important in drug formulation. In this study an antihypertensive drug, valsartan, which is a weak acid with bitter taste, was used as a model drug to mask its taste with dowex2 (weak base anion exchange resin). The taste masking of a drug using ion exchange resin basically depends on the complex formation between the drug and a specific type of resin. Complex formation under various preparation conditions including; the ratio of drug to resin, mixing time, the pH of the processing medium and the concentration of valsartan was investigated in this study. Optimum conditions for complex formation and maximum drug load were obtained at a drug-resin ratio 1:8, mixing time 4 hours, pH 6.8, temperature 50º C and drug concentration 0.02% w/v. The drug resin ate complex was evaluated for the drug content, taste, drug release and molecular properties. The resinate formation was confirmed using different analytical techniques like thermal analysis using differential scanning calorimetry (DSC), spectroscopic method like Fourier transform infrared spectroscopy (FTIR) and by X-ray powder diffraction analysis (XRPD).


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4394
Author(s):  
Conghui Li ◽  
Xiaolu Han ◽  
Xiaoxuan Hong ◽  
Xianfu Li ◽  
Hui Zhang ◽  
...  

Since the advent of ion exchange resin, it has been widely used in many fields, including drug delivery systems. The drug binds to the resin through an exchange reaction to form a drug–resin complex, which can gradually release drugs through the exchange of physiological ions in the gastrointestinal tract, to realize functions such as taste masking and regulating release. In this study, the complexes of methylphenidate hydrochloride and Amberlite IRP69 were prepared and evaluated to explore the mechanism of complexation, influencing factors and release mechanism at a molecular level. Firstly, with the properties of the selected complexes, molecular dynamics simulation was innovatively used to find that the intermolecular interaction between drug molecules and ion exchange resin molecules is mainly caused by the stacking effect of π and salt bridges. Secondly, with the drug loading status as an indicator, the factors affecting the compounding process of the drug and resin were explored. Finally, the release mechanism of the drug–resin complex was studied by mathematical model fitting. In summary, a variety of methods were used to study the mechanism of complexation and release between drug and resin, providing a theoretical basis for promoting the marketing of ion−exchange resin−mediated oral preparations.


Author(s):  
NISHANT OZA ◽  
SWATI SAGAR

Objective: The aim of present work was to develop of pediatric cefuroxime axetil 125 mg dispersible tablets by using ion exchange resin as a taste masking agent and quality target product profile was defined based on the properties of the cefuroxime axetil. Methods: Initially, cefuroxime axetil and various resin complexes (DRC) were prepared with different conditions and evaluated for taste masking and drug loading. Optimized DRC was used to formulate the dispersible tablet. A 32 full factorial design was employed to study the effect of mannitol (X1) and microcrystalline cellulose PH-101 (X2) on drug release at 10 min and time taken to 80% drug release. In the present study, the following constraints were arbitrarily used for the selection of an optimized batch: Q10>65% and T80%<30 min. Multiple linear regression analysis, ANOVA and graphical representation of the influence factor by 3D plots were performed by using Sigmaplot 11.0. Checkpoint batch was prepared to validate the evolved model. Results: Among the various drug resins complex DRC-9 was found with less bitter taste which was containing kyron T-114 and among the all factorial batch F7 showed highest drug release at 10 min (Q10) and lowest time taken to 80% drug release (T80) hence batch F7 was selected as an optimized batch and it’s found to be stable in the stability evaluation. Conclusion: The results of full factorial design indicate mannitol and MCC PH-101 have a significant effect on drug release.


2016 ◽  
Vol 52 ◽  
pp. 171-176
Author(s):  
M. Palkina ◽  
O. Metlitska

The aim of the research – adaptation, optimization and using of existing DNA extraction methods from bees’ biological material with the reagent «Chelex-100" under complex economic conditions of native laboratories, which will optimize labour costs and improve the economic performance of DNA extraction protocol. Materials and methods. In order to conduct the research the samples of honey bees’ biological material: queen pupae exuviae, larvae of drone brood, some adult bees’ bodies (head and thorax) were selected. Bowl and drone brood were obtained from the experimental bee hives of Institute of Apiculture nd. a. P. I. Prokopovich of NAAS. DNA extraction from biosamples of Apis mellifera ssp. was carried out using «Chelex-100®» ion exchange resin in different concentrations and combinations. Before setting tests for determination of quantitative and quality indexes, dilution of DNA samples of the probed object was conducted in ratio 1:40. The degree of contamination with protein and polysaccharide fractions (OD 260/230), quantitative content of DNA (OD 260/280) in the extracted tests were conducted using spectrophotometer of «Biospec – nano» at the terms of sample volume in 2 µl and length of optical way in 0,7 mm [7]. Verification of DNA samples from biological material of bees, isolated by «Chelex-100®», was conducted after cold keeping during 24 hours at 20°C using PСR with primaries to the fragment of gene of quantitative trait locus (QTL) Sting-2 of next structure [8]:  3' – CTC GAC GAG ACG ACC AAC TTG – 5’; 3' – AAC CAG AGT ATC GCG AGT GTT AC – 5’ Program of amplification: 94 °C – 5 minutes – 1 cycle; 94 °C – 1 minute, 57°C – 1 minute, 72 °C – 2 minutes – 30 cycles; elongation after 72°C during 2 minutes – 1 cycle. The division of obtained amplicons was conducted by gel electrophoresis at a low current – 7 µÀ, in 1,5 % agarose gel (Sigma ®) in TAE buffer [7]. The results. At the time of optimization of DNA isolation methods, according to existing methods of foreign experts, it was found optimal volume of ion exchange resin solution was in the proposed concentration: instead of 60 µl of solution used 120 µl of «Chelex-100®», time of incubation was also amended from 30 minutes to 180 minutes [9]. The use of the author's combination of method «Chelex-100®» with lysis enzymes, proteinase K and detergents (1M dithiothreitol), as time of incubation was also amended, which was reduced to 180 minutes instead of the proposed 12 hours [10]. Changes in quality characteristics of obtained DNA in samples after reduction in incubation time were not found. Conclusions. The most economical method of DNA isolation from bees’ biological material is 20% solution of «Chelex-100» ion exchange resin with the duration of the incubation period of 180 minutes. It should also be noted that the best results can be obtained from exuviae, selected immediately after the queen’s exit from bowl, that reduces the likelihood of DNA molecules destruction under the influence of nucleases activation, but not later than 12 hours from release using the technology of isolated obtain of queens.


Sign in / Sign up

Export Citation Format

Share Document