scholarly journals Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies

2014 ◽  
Vol 6 ◽  
pp. 250-270 ◽  
Author(s):  
James E. Coons ◽  
Daniel M. Kalb ◽  
Taraka Dale ◽  
Babetta L. Marrone
Keyword(s):  
Low Cost ◽  
2011 ◽  
Vol 9 (7) ◽  
pp. 071201-71204 ◽  
Author(s):  
Gregor Gerstorfer Gregor Gerstorfer ◽  
Bernhard G. Zagar Bernhard G. Zagar

2015 ◽  
Vol 4 (2) ◽  
Author(s):  
Muhammad Hasrul Ma’ruf, Nurhayati

Simulation tools help creating a low cost and efficient development of embedded system. SID is an open source simulator software that consists library of components for modelling hardware and software components. A component can be written in C/C++ and Tcl/Tk. Currently, the SID simulation toolkit only provides support for C++ and Tcl/Tk. Tcl/Tk is used to create GUI-based components. However, we have observed that Tcl/Tk components causing slow simulation response. Developing GUI using Tcl/Tk is also inflexible. Thus it is not proper for developing the cutting-edge products with rich graphics. In this work, we introduced the idea of Java as an alternative platform for developing components in SID. We suggest two design approaches for Java Bridge module for SID. One is the approach based on socket communication, and the other is based on JNI. SID API for Java component development is also proposed to ensure the compatibility and simplicity of SID components in Java. Key-Words: - Embedded system, Simulator, SIDd, Bridge component, Java, Software


2019 ◽  
Vol 8 (1) ◽  
pp. 7 ◽  
Author(s):  
Antonio Celesti ◽  
Maria Fazio ◽  
Fermín Galán Márquez ◽  
Alex Glikson ◽  
Hope Mauwa ◽  
...  

Nowadays, the penetration of sensors and actuators in different application fields is revolutionizing all aspects of our daily life. One of the major sectors that is taking advantage of such cutting-edge cheap smart devices is healthcare. In this context, Remote Patient Monitoring (RPM) at home represents a tempting opportunity for hospitals to reduce clinical costs and to improve the quality of life of both patients and their families. It allows patients to be monitored remotely by means networks of Internet of Things (IoT) medical devices equipped with sensors and actuators that collect healthcare data from patients and send them to a Cloud-based Hospital Information System (HIS) for processing. Up to now, many different proprietary software systems have been developed as stand-along expensive solutions, presenting interoperability, extensibility, and scalability issues. In recent years, the European Commission (EC) has promoted the wide adoption of FIWARE technology, launching 16 Industrial Accelerators focusing on different application fields. One of these, i.e., FICHe, is specialized in healthcare, providing the guidelines on how to develop eHealth systems. This paper focuses on how to compose new cutting-edge IoT and Cloud-based Cyber Physical Health Sytem (CPHS) services and applications interconnected with remote medical sensors and actuators using FIWARE technology in the context envisioned by FICHe. In particular, we discuss the design and development of an RPM system implemented through the collaboration between the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Bonino Pulejo” (i.e., a clinical and research healthcare centre specialized in the treatment of neuro lesions), University of Messina, IBM Research, Telefónica, and the University of the Western Cape in South Africa. The description of our best practice provides a model and guidelines for the development of lightweight and low cost RPM services for rural and isolated areas, with the expectation of expanding healthcare to the developing world and in general allows us to outline how to deal with the real adoption of the FIWARE technology in an e-health project.


2010 ◽  
Vol 135 ◽  
pp. 309-313 ◽  
Author(s):  
Xin Li Tian ◽  
Fang Guo ◽  
Jun Fei Yang ◽  
Bao Guo Zhang ◽  
Ya Tao Mao

Axial turning is a method to cut the cylindrical work piece along its axis, using the kinetic energy of high-speed rotation annularity tool, the abrasives in tool tip (or toes) as the main cutting edge to remove materials and the abrasives in the inner surface of tool as a minor cutting edge to sharpen the processed surface. The cutting thickness and feed rate could be more than 3~5mm and 30mm/min respectively in a cutting, and realized high-efficient, low-cost processing of engineering ceramics. Processing mechanism analyses showed that both median/radial cracks and lateral cracks occurred in the part to be removed, and the intensity of the processed part had little destroyed, only needing adjust the axial force to control the length of transverse cracks.


2010 ◽  
Vol 154-155 ◽  
pp. 1027-1032 ◽  
Author(s):  
Xin Li Tian ◽  
Fang Guo ◽  
Ya Tao Mao ◽  
Jian Quan Wang ◽  
Sen Xu ◽  
...  

Axial turning-grinding is a processing method to cut the cylindrical workpiece along its axis, using the kinetic energy of high-speed rotation annularity tool, the abrasives in tool tip as the main cutting edge to remove materials and the abrasives in the outside surface of tool as a minor cutting edge to sharpen the processed surface. Comparing with concentric axial turning-grinding, eccentric axial turning-grinding has higher efficiency. The result indicated that cutting thickness and feed rate could be more than 5~10mm and 200mm/min respectively in a cutting, realizing high-efficiency, low-cost processing of engineering ceramics. According to axial force, chips’ shape and damage degree of surface to be processed, obtaining the proper feed rate range. Removal mechanism analyses showed that both median/radial cracks and lateral cracks occurred in the part to be removed, and the intensity of the processed part had little destroyed, only needing adjust axial force to control the length of transverse cracks.


2012 ◽  
Vol 426 ◽  
pp. 89-92 ◽  
Author(s):  
X.L. Tian ◽  
Fang Guo ◽  
Ya Tao Mao ◽  
B.G. Zhang ◽  
Jian Quan Wang ◽  
...  

Axial turning-grinding is a processing method to cut cylindrical workpiece or inner surface of hole along its axis, using the kinetic energy of high-speed rotation annularity tool, the abrasives in tool tip as the main cutting edge to remove materials and the abrasives in the outside surface of tool as a minor cutting edge to sharpen the processed surface. And the cutting thickness and feed rate could be more than 5~10mm and 200mm/min respectively in a cutting, realizing high-efficiency, low-cost processing of engineering ceramics. Using the method, the ceramic sleeve of delivery valve precision coupling components in the engine is processed with high efficiency, and tool wear was researched with single factor test. The result indicated that the ratio of spindle speed and workpiece speed should be within a certain range in order to minimize tool wear, and tool wear increases with the increase of cutting depth, but not a linear relation.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. D. Muzzy ◽  
R. D. Hester ◽  
J. L. Hubbard

Polyethylene is one of the most important plastics produced today because of its good physical properties, ease of fabrication and low cost. Studies to improve the properties of polyethylene are leading to an understanding of its crystalline morphology. Polyethylene crystallized by evaporation from dilute solutions consists of thin crystals called lamellae. The polyethylene molecules are parallel to the thickness of the lamellae and are folded since the thickness of the lamellae is much less than the molecular length. This lamellar texture persists in less perfect form in polyethylene crystallized from the melt.Morphological studies of melt crystallized polyethylene have been limited due to the difficulty of isolating the microstructure from the bulk specimen without destroying or deforming it.


Sign in / Sign up

Export Citation Format

Share Document